121. Best Time to Buy and Sell Stock【easy】

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

Example 1:

Input: [7, 1, 5, 3, 6, 4]
Output: 5 max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price)

Example 2:

Input: [7, 6, 4, 3, 1]
Output: 0 In this case, no transaction is done, i.e. max profit = 0.

解法一:

先看@keshavk 的解析和代码

We take prices array as [5, 6, 2, 4, 8, 9, 5, 1, 5]
In the given problem, we assume the first element as the stock with lowest price.
Now we will traverse the array from left to right. So in the given array 5 is the stock we bought. So next element is 6. If we sell the stock at that price we will earn profit of $1.

Prices:      [5, 6, 2, 4, 8, 9, 5, 1, 5]

Profit:       Bought:5     Sell:6               Profit:$1             max profit=$1

Now the next element is 2 which have lower price than the stock we bought previously which was 5. So if we buy this stock at price $2 and sells it in future then we will surely earn more profit than the stock we bought at price 5. So we bought stock at $2.

Profit:      Bought:2     Sell:-              Profit:-                  max profit=$1

Next element is 4 which has higher price than the stock we bought. So if we sell the stock at this price.

Profit:      Bought:2     Sell:4              Profit:$2               max profit=$2

Moving further, now the next stockprice is $8. We still have $2 stock we bought previously. If instead of selling it at price $4, if we sell it for $8 then the profit would be $6.

Profit:      Bought:2     Sell:8              Profit:$6                max profit=$6

Now next stock is of $9 which is also higher than the price we bought at ($2).

Profit:      Bought:2     Sell:9              Profit:$7                max profit=$7

Now the next stock is $5. If we sell at this price then we will earn profit of $3, but we already have a max profit of $7 because of our previous transaction.

Profit:      Bought:2     Sell:5              Profit:$3                max profit=$7

Now next stock price is $1 which is less than the stock we bought of $2. And if we buy this stock and sell it in future then obviously we will gain more profit. So the value of bought will become $1.

Profit:      Bought:1     Sell:-              Profit:-                   max profit=$7

Now next stock is of $5. So this price is higher than the stock we bought.

Profit:      Bought:1     Sell:5              Profit:$4                max profit=$7

But our maximum profit will be $7.

 public int maxProfit(int[] prices) {
int ans=;
if(prices.length==)
{
return ans;
}
int bought=prices[];
for(int i=;i<prices.length;i++)
{
if(prices[i]>bought)
{
if(ans<(prices[i]-bought))
{
ans=prices[i]-bought;
}
}
else
{
bought=prices[i];
}
}
return ans;
}

解法二:

结合上面解法一的思路,重新简化代码

 class Solution {
public:
int maxProfit(vector<int>& prices) {
int min_value = INT_MAX;
int max_value = ; for (int i = ; i < prices.size(); ++i) {
min_value = min(min_value, prices[i]);
max_value = max(max_value, prices[i] - min_value);
} return max_value;
}
};

写的过程中参考了@linjian2015 的代码

解法三:

public int maxProfit(int[] prices) {
int maxCur = 0, maxSoFar = 0;
for(int i = 1; i < prices.length; i++) {
maxCur = Math.max(0, maxCur += prices[i] - prices[i-1]);
maxSoFar = Math.max(maxCur, maxSoFar);
}
return maxSoFar;
}

参考@jaqenhgar 的代码

The logic to solve this problem is same as "max subarray problem" using Kadane's Algorithm. Since no body has mentioned this so far, I thought it's a good thing for everybody to know.

All the straight forward solution should work, but if the interviewer twists the question slightly by giving the difference array of prices, Ex: for {1, 7, 4, 11}, if he gives {0, 6, -3, 7}, you might end up being confused.

Here, the logic is to calculate the difference (maxCur += prices[i] - prices[i-1]) of the original array, and find a contiguous subarray giving maximum profit. If the difference falls below 0, reset it to zero.

*maxCur = current maximum value

*maxSoFar = maximum value found so far

关于 Kadane's Algorithm 说明如下:

From Wikipedia, the free encyclopedia
 

Visualization of how sub-arrays change based on start and end positions of a sample. Each possible contiguous sub-array is represented by a point on a colored line. That point's y-coordinate represents the sum of the sample. Its x-coordinate represents the end of the sample, and the leftmost point on that colored line represents the start of the sample. In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10].

In computer science, the maximum subarray problem is the task of finding the contiguous subarray within a one-dimensional array of numbers which has the largest sum. For example, for the sequence of values −2, 1, −3, 4, −1, 2, 1, −5, 4; the contiguous subarray with the largest sum is 4, −1, 2, 1, with sum 6.

The problem was first posed by Ulf Grenander of Brown University in 1977, as a simplified model for maximum likelihoodestimation of patterns in digitized images. A linear time algorithm was found soon afterwards by Jay Kadane of Carnegie Mellon University (Bentley 1984).

A bit of a background: Kadane's algorithm is based on splitting up the set of possible solutions into mutually exclusive (disjoint) sets. We exploit the fact that any solution (i.e., any member of the set of solutions) will always have a last element  (this is what is meant by "sum ending at position "). Thus, we simply have to examine, one by one, the set of solutions whose last element's index is , the set of solutions whose last element's index is , then , and so forth to . It turns out that this process can be carried out in linear time.

Kadane's algorithm begins with a simple inductive question: if we know the maximum subarray sum ending at position  (call this  ), what is the maximum subarray sum ending at position  (equivalently, what is )? The answer turns out to be relatively straightforward: either the maximum subarray sum ending at position  includes the maximum subarray sum ending at position  as a prefix, or it doesn't (equivalently, , where  is the element at index ).

Thus, we can compute the maximum subarray sum ending at position  for all positions  by iterating once over the array. As we go, we simply keep track of the maximum sum we've ever seen. Thus, the problem can be solved with the following code, expressed here in Python:

 def max_subarray(A):
max_ending_here = max_so_far = A[0]
for x in A[1:]:
max_ending_here = max(x, max_ending_here + x)
max_so_far = max(max_so_far, max_ending_here)
return max_so_far

Note: with a bit of reasoning you will see that max_so_far is equal to .

The algorithm can also be easily modified to keep track of the starting and ending indices of the maximum subarray (when max_so_far changes) as well as the case where we want to allow zero-length subarrays (with implicit sum 0) if all elements are negative.

Because of the way this algorithm uses optimal substructures (the maximum subarray ending at each position is calculated in a simple way from a related but smaller and overlapping subproblem: the maximum subarray ending at the previous position) this algorithm can be viewed as a simple/trivial example of dynamic programming.

The runtime complexity of Kadane's algorithm is  .

参考自:https://en.wikipedia.org/wiki/Maximum_subarray_problem

 

121. Best Time to Buy and Sell Stock【easy】的更多相关文章

  1. 149. Best Time to Buy and Sell Stock【medium】

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  2. 121. Best Time to Buy and Sell Stock (一) leetcode解题笔记

    121. Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of ...

  3. 30. leetcode 121. Best Time to Buy and Sell Stock

    121. Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of ...

  4. leetcode 121. Best Time to Buy and Sell Stock 、122.Best Time to Buy and Sell Stock II 、309. Best Time to Buy and Sell Stock with Cooldown

    121. Best Time to Buy and Sell Stock 题目的要求是只买卖一次,买的价格越低,卖的价格越高,肯定收益就越大 遍历整个数组,维护一个当前位置之前最低的买入价格,然后每次 ...

  5. 121. Best Time to Buy and Sell Stock@python

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  6. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  7. 【刷题-LeetCode】121 Best Time to Buy and Sell Stock

    Best Time to Buy and Sell Stock Say you have an array for which the ith element is the price of a gi ...

  8. LeetCode OJ 121. Best Time to Buy and Sell Stock

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  9. 121. Best Time to Buy and Sell Stock

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

随机推荐

  1. JDK/Java里的设计模式

    JDK/Java里的设计模式

  2. [xsy1140]求值

    $\newcommand{ali}[1]{\begin{align*}#1\end{align*}}$题意:给定$n,b,c,d,e,a_{0\cdots n-1}$,令$x_k=bc^{4k}+dc ...

  3. [CF480E]Parking Lot

    题意:给一个$n\times m$的网格,初始时有些地方不能选,给$k$个询问$(x,y)$,每次令$(x,y)$不能选,然后询问最大子正方形的边长 如果按原题来做,禁止选一个点对答案的影响是极其鬼畜 ...

  4. NSOperation的并发与非并发

    NSoperation也是多线程的一种,NSopertaion有2种形式  (1) 并发执行       并发执行你需要重载如下4个方法     //执行任务主函数,线程运行的入口函数    - (v ...

  5. Ubuntu -- 安装和部署php5.6 nginx php5.6-fpm

      1.首先输入用户名和密码进行登录 2.升级更新软件包 sudo apt-get update sudo apt-get upgrade 判断都填y 3.安装nginx sudo apt-get i ...

  6. 针对WebLogic Server 12.1.3版本打补丁

    先去下载补丁文件,在链接 https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179118524484876&id= ...

  7. 想使用gevent、mysql、sqlalchemy实现python项目协程异步达到并发的效果

    如题,但是查看了很多资料,都说python这边的mysql不支持异步并发,只能阻塞进行,心塞30秒,暂时放弃这方面的研究 如果不操作数据库的化,比如请求url.操作文件,还是可以用gevent来异步实 ...

  8. 【JUnit4.10源码分析】6.1 排序和过滤

    abstract class ParentRunner<T> extends Runner implements Filterable,Sortable 本节介绍排序和过滤. (尽管JUn ...

  9. Oracle OS认证 口令文件 密码丢失处理

    Oracle OS认证 口令文件 密码丢失处理 分类: Oracle Basic Knowledge2009-10-19 14:24 5031人阅读 评论(9) 收藏 举报 oracleos数据库sq ...

  10. 最短路径——Floyd,Dijkstra(王道)

    题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...