Spark RDD简介与运行机制概述
RDD工作原理:
主要分为三部分:创建RDD对象,DAG调度器创建执行计划,Task调度器分配任务并调度Worker开始运行。
SparkContext(RDD相关操作)→通过(提交作业)→(遍历RDD拆分stage→生成作业)DAGScheduler→通过(提交任务集)→任务调度管理(TaskScheduler)→通过(按照资源获取任务)→任务调度管理(TaskSetManager)
举例:以下面一个按 A-Z 首字母分类,查找相同首字母下不同姓名总个数的例子来看一下 RDD 是如何运行起来的。
步骤 1 :创建 RDD 。 上面的例子除去最后一个 collect 是个动作,不会创建 RDD 之外,前面四个转换都会创建出新的 RDD 。因此第一步就是创建好所有 RDD( 内部的五项信息 ) 。
步骤 2 :创建执行计划。 Spark 会尽可能地管道化,并基于是否要重新组织数据来划分 阶段 (stage) ,例如本例中的 groupBy() 转换就会将整个执行计划划分成两阶段执行。最终会产生一个 DAG(directed acyclic graph ,有向无环图 ) 作为逻辑执行计划。
步骤 3 :调度任务。 将各阶段划分成不同的 任务 (task) ,每个任务都是数据和计算的合体。在进行下一阶段前,当前阶段的所有任务都要执行完成。因为下一阶段的第一个转换一定是重新组织数据的,所以必须等当前阶段所有结果数据都计算出来了才能继续。
假设本例中的 hdfs://names 下有四个文件块,那么 HadoopRDD 中 partitions 就会有四个分区对应这四个块数据,同时 preferedLocations 会指明这四个块的最佳位置。现在,就可以创建出四个任务,并调度到合适的集群结点上。
Task管理和序列化:
Task的运行要解决的问题不外乎就是如何以正确的顺序,有效地管理和分派任务,如何将Task及运行所需相关数据有效地发送到远端,以及收集运行结果
Task的派发源起于DAGScheduler调用TaskScheduler.submitTasks将一个Stage相关的一组Task一起提交调度。
在TaskSchedulerImpl中,这一组Task被交给一个新的TaskSetManager实例进行管理,所有的TaskSetManager经由SchedulableBuilder根据特定的调度策略进行排序,TaskSchedulerImpl的resourceOffers函数中,当前被选择的TaskSetManager的ResourceOffer函数被调用并返回包含了序列化任务数据的TaskDescription,最后这些TaskDescription再由SchedulerBackend派发到ExecutorBackend去执行
系列化的过程中,上一节中所述App依赖文件相关属性URL等通过DataOutPutStream写出,而Task本身通过可配置的Serializer来序列化,当前可配制的Serializer包括如JavaSerializer ,KryoSerializer等
Task的运行结果在Executor端被序列化并发送回SchedulerBackend,由于受到Akka Frame Size尺寸的限制,如果运行结果数据过大,结果会存储到BlockManager中,这时候发送到SchedulerBackend的是对应数据的BlockID,TaskScheduler最终会调用TaskResultGetter在线程池中以异步的方式读取结果,TaskSetManager再根据运行结果更新任务状态(比如失败重试等)并汇报给DAGScheduler等
Spark RDD简介与运行机制概述的更多相关文章
- SSL/TLS 协议运行机制概述(二)
SSL/TLS 协议运行机制概述(二) 在SSL/TLS 协议运行机制概述(一)中介绍了TLS 1.2 的运行机制,现在我们来看年 TLS 1.3 的运行机制.会涉及到SSL/TLS 协议运行机制概述 ...
- SSL/TLS 协议运行机制概述(一)
SSL/TLS 协议运行机制概述(一) SSL/TLS 发展史 1994年,NetScape 设计了SSL协议(Secure Sockets Layer) 1.0,未正式发布 1995年,NetSca ...
- 【Spark Core】任务运行机制和Task源代码浅析1
引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...
- 通过WordCount解析Spark RDD内部源码机制
一.Spark WordCount动手实践 我们通过Spark WordCount动手实践,编写单词计数代码:在wordcount.scala的基础上,从数据流动的视角深入分析Spark RDD的数据 ...
- Spark standalone简介与运行wordcount(master、slave1和slave2)
前期博客 Spark standalone模式的安装(spark-1.6.1-bin-hadoop2.6.tgz)(master.slave1和slave2) Spark运行模式概述 1. Stan ...
- 01_日志采集框架Flume简介及其运行机制
离线辅助系统概览: 1.概述: 在一个完整的大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集.结果数据导出. 任务调度等不可或缺的辅助系统,而这些辅助 ...
- MapReduce的核心运行机制
MapReduce的核心运行机制概述: 一个完整的 MapReduce 程序在分布式运行时有两类实例进程: 1.MRAppMaster:负责整个程序的过程调度及状态协调 2.Yarnchild:负责 ...
- Spark 中 RDD的运行机制
1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...
- Spark运行模式概述
Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...
随机推荐
- Codeforces Round #372 (Div. 2)
Codeforces Round #372 (Div. 2) C. Plus and Square Root 题意 一个游戏中,有一个数字\(x\),当前游戏等级为\(k\),有两种操作: '+'按钮 ...
- POJ 3041 Asteroids(最小点覆盖集)
Asteroids Time Limit: 1000MS Mem ...
- js类型判断
console.log('---------------------'); var a="string"; console.log(a); //string var a=1; co ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- C++面向对象要点
先说说面向对象思想的一个总体认识 对象通常会有行为,这些行为是靠信息支撑,这些信息包括外部信息和内部信息,对象行为会维护其中的一部分信息 因此对象可以看成是这样一种实体,它获取信息,然后决定自己的行为 ...
- CentOS如何挂载硬盘
远程SSH登录上CentOS服务器后,进行如下操作 提醒:挂载操作会清空数据,请确认挂载盘无数据或者未使用 第一步:列出所有磁盘 命令: ll /dev/disk/by-path 提示:如果无法确 ...
- SqlServer中quotename用法与实例
语法 QUOTENAME ( 'character_string' [ , 'quote_character' ] ) 参数 'character_string' Unicode 字符数据构成的字符串 ...
- 一个LINUX狂人的语录(个人认为很精辟)
http://blog.chinaunix.net/uid-57160-id-2734431.html?page=2 我已经半年没有使用 Windows 的方式工作了.Linux 高效的完成了我所有的 ...
- Response.Redirect在新窗口打开网页
来自:http://www.woosky.net/show.asp?id=761 Respose.Write("<script language='javascript'>win ...
- Ueditor 标签被过滤
1:将allowDivTransToP设置为false 2:将root.traversal方法中的switch注释