Fliptile
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 3062   Accepted: 1178

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word "IMPOSSIBLE".

Input

Line 1: Two space-separated integers: M and N 
Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

Source

 
枚举第一行翻转的类型,根据翻转性质推出下面所有行的翻转情况
 
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX = ;
const int dx[] = {-,,,,};
const int dy[] = {,-,,,};
int N,M;
int tile[MAX][MAX];
int flip[MAX][MAX];
int opt[MAX][MAX]; int get(int x,int y) {
int c = tile[x][y];
for(int d = ; d < ; ++d) {
int x1 = x + dx[d],y1 = y + dy[d];
if(x1 >= && x1 <= N && y1 >= && y1 < M) {
c += flip[x1][y1];
}
}
return c % ; }
int cal() {
int res = ;
int t[MAX * MAX + ];
for(int i = ; i <= N; ++i) {
for(int j = ; j < M; ++j) {
if(get(i - ,j)) {
flip[i][j] = ;
}
}
} for(int i = ; i < M; ++i) {
if(get(N,i)) return -;
} for(int i = ; i <= N; ++i) {
for(int j = ; j < M; ++j) {
res += flip[i][j];
}
} return res; } void solve() {
int res = -;
for(int s = ; s < ( << M); ++s) {
memset(flip,,sizeof(flip));
for(int i = ; i < M; ++i) {
if(s & ( << i)) flip[][i] = ;
}
int num = cal();
//printf("num = %d\n",num);
if(num >= && (res < || res > num)) {
res = num;
memcpy(opt,flip,sizeof(flip));
} } if(res < ) {
printf("IMPOSSIBLE\n");
} else {
for(int i = ; i <= N; ++i) {
for(int j = ; j < M; ++j) {
printf("%d",opt[i][j]);
if(j != M - ) printf(" "); }
printf("\n");
}
}
} int main()
{
// freopen("sw.in","r",stdin);
scanf("%d%d",&N,&M);
for(int i = ; i <= N; ++i) {
for(int j = ; j < M; ++j) {
scanf("%d",&tile[i][j]);
//printf("%d ",tile[i][j]);
}
//printf("\n");
} solve();
//cout << "Hello world!" << endl;
return ;
}

POJ 3279的更多相关文章

  1. 【枚举】POJ 3279

    直达–>POJ 3279 Fliptile 题意:poj的奶牛又开始作孽了,这回他一跺脚就会让上下左右的砖块翻转(1->0 || 0->1),问你最少踩哪些砖块才能让初始的砖块全部变 ...

  2. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  3. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  4. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  5. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  6. 【POJ 3279 Fliptile】开关问题,模拟

    题目链接:http://poj.org/problem?id=3279 题意:给定一个n*m的坐标方格,每个位置为黑色或白色.现有如下翻转规则:每翻转一个位置的颜色,与其四连通的位置都会被翻转,但注意 ...

  7. POJ 3279 Fliptile[二进制状压DP]

    题目链接[http://poj.org/problem?id=3279] 题意:给出一个大小为M*N(1 ≤ M ≤ 15; 1 ≤ N ≤ 15) 的图,图中每个格子代表一个灯泡,mp[i][j] ...

  8. POJ 3279 - Fliptile - [状压+暴力枚举]

    题目链接:http://poj.org/problem?id=3279 Sample Input 4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 Sample Output 0 ...

  9. POJ - 3279 Fliptile (枚举)

    http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...

  10. poj 3279 Fliptile(二进制)

    http://poj.org/problem?id=3279 在n*N的矩阵上,0代表白色,1代表黑色,每次选取一个点可以其颜色换过来,即白色变成黑色,黑色变成白色,而且其上下左右的点颜色也要交换,求 ...

随机推荐

  1. Ruby on Rail学习笔记

    说明:只针对Windows8.1 Windows下,上rubyinstaller上下载最新的railsinstaller包含Ruby2.1的,然后更新gem 用命令: gem update --sys ...

  2. java中的接口回调

    [接口回调]接口回调是多态的另一种体现.接口回调是指:可以把使用某一个接口的类创建的对象的引用赋给该接口声明的接口变量中,那么该接口变量就可以调用被类实现的接口中的方法.当接口变量调用被类实现的接口中 ...

  3. android获取手机录

    在Android开发中,读取手机通讯录中的号码是一种基本操作,但是由于Android的版本众多,所以手机通讯录操作的代码比较纷杂,在本文中进行一下总结. Android1.5是现在的Android系统 ...

  4. ORA-01017 invalid username/password;logon denied" (密码丢失解决方案)

    1.先确认是否输错 用户名和密码 2.如果的确是丢失密码的话: 查看sqlnet.ora 如果是 SQLNET.AUTHENTICATION_SERVICES= (NONE) , 需更改为SQLNET ...

  5. MEF(Managed Extensibility Framework) 微软平台插件化开发

    体验Managed Extensibility Framework精妙的设计   MEF(Managed Extensibility Framework)是.NET Framework 4.0一个重要 ...

  6. js原型和构造函数混合模式

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. 怎样把php数组转换成字符串,php implode()

    实例代码 一维数组转换成字符串代码! <?php $arr1=array("shu","zhu","1"); $c=implode(& ...

  8. 寻找idea...

    域名:tianhuangdilao.com 天荒地老 现在闲置,寻求好的idea...

  9. 轻松解决在一个虚拟主机上运行多个 ASP.NET 网站应用

    不知道有没有朋友像我一样会遇到这样一个问题: 在网上购买 .NET 空间,由于虚拟主机的限制,你并不能把某个目录设为一个独立的应用,或者一些价格比较高的空间,虽然可以设置,但数量也是有限的.这个问题导 ...

  10. 每日会议<第二天>

    昨天:看android编程教学视频 今天:看了老师给的学姐.学长软件的代码,找到他们的优缺点,取长补短 困难:创新意识少,提不出建设性意见,缺少自己的思想