#一,自己写KNN

df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\example_data.csv')
head(df)

#得出距离矩阵
distance.matrix <- function(df)
{

#生成一万个NA,并转成100*100的矩阵
distance <- matrix(rep(NA, nrow(df) ^ 2), nrow = nrow(df))

#计算两两之间的欧氏距离

for (i in 1:nrow(df))

{
for (j in 1:nrow(df))
{
distance[i, j] <- sqrt((df[i, 'X'] - df[j, 'X']) ^ 2 + (df[i, 'Y'] - df[j, 'Y']) ^ 2)
}
}
return(distance)
}

#查找与数据点i距离最短的前k个点
k.nearest.neighbors <- function(i, distance, k = 5)
{

#distance[i, ]是所有点与点i的距离,排个序,取K个下标,从2开始的原因是排第1位的就是是数据点i自己
return(order(distance[i, ])[2:(k + 1)])
}

#得出预测值
knn <- function(df, k = 5)
{

#得出距离矩阵
distance <- distance.matrix(df)

#predictions存NA
predictions <- rep(NA, nrow(df))
for (i in 1:nrow(df))
{

#得出与i最近的K个点的下标
indices <- k.nearest.neighbors(i, distance, k = k)

#均值大于0.5赋1.否则赋0
predictions[i] <- ifelse(mean(df[indices, 'Label']) > 0.5, 1, 0)
}
return(predictions)
}

#添加预测列
df <- transform(df, kNNPredictions = knn(df))

#以下是计算预测错误的个数,共7个,总共也就100个,正确率是93%
sum(with(df, Label != kNNPredictions))
#把刚才自己写的KNN函数删除
rm('knn')

#二、以下才是用R中的函数来做KNN

library('class')
df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\example_data.csv')
n <- nrow(df)
set.seed(1)

#从1到n中随机抽一半作为训练集,剩下的为测试集
indices <- sort(sample(1:n, n * (1 / 2)))
training.x <- df[indices, 1:2]
test.x <- df[-indices, 1:2]
training.y <- df[indices, 3]
test.y <- df[-indices, 3]
# There's a bug here!
predicted.y <- knn(training.x, test.x, training.y, k = 5)

#预测错了7个点,但测试集才50条观测行,因此正确率86%
sum(predicted.y != test.y)

#下面看看逻辑回归
logit.model <- glm(Label ~ X + Y, data = df[indices, ])
predictions <- as.numeric(predict(logit.model, newdata = df[-indices, ]) > 0)
sum(predictions != test.y)

#结果是50行预测错了16个点,正确率只有68%,因此结论是如果问题完全不是线性时,K近邻的表现好过GLM

#三、以下进行推荐案例,用Kaggle的数据,根据一个程序员已经安装的程序包来预测这个程序员是否会安装另一个程序包

installations <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\data\\installations.csv')
head(installations)
library('reshape')

#数据集中共三列,分别是Package,User,Installed

#cast函数的作用:将数据集中的数据,User为行,Package为列,值为是否安装

#结果矩阵中,第一列是用户名

user.package.matrix <- cast(installations, User ~ Package, value = 'Installed')

row.names(user.package.matrix) <- user.package.matrix[, 1]

user.package.matrix <- user.package.matrix[, -1]

#计算一下相关性

similarities <- cor(user.package.matrix)

#把相似度转换为距离矩阵,把相似度1转换为距离0,把相似度-1转换为距离无穷大
distances <- -log((similarities / 2) + 0.5)

#返回与数据点i最近的K个点的下标

k.nearest.neighbors <- function(i, distances, k = 25)
{
return(order(distances[i, ])[2:(k + 1)])
}

installation.probability <- function(user, package, user.package.matrix, distances, k = 25)
{
neighbors <- k.nearest.neighbors(package, distances, k = k)
return(mean(sapply(neighbors, function (neighbor) {user.package.matrix[user, neighbor]})))
}

#对于用户1有多少概率安装程序包1

installation.probability(1, 1, user.package.matrix, distances)

#计算出用户最可能安装的程序包,按概率排序

most.probable.packages <- function(user, user.package.matrix, distances, k = 25)
{
return(order(sapply(1:ncol(user.package.matrix),
function (package)
{
installation.probability(user,
package,
user.package.matrix,
distances,
k = k)
}),
decreasing = TRUE))
}

user <- 1

listing <- most.probable.packages(user, user.package.matrix, distances)

colnames(user.package.matrix)[listing[1:10]]

Machine Learning for hackers读书笔记(十)KNN:推荐系统的更多相关文章

  1. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

  2. Machine Learning for hackers读书笔记(七)优化:密码破译

    #凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...

  3. Machine Learning for hackers读书笔记(六)正则化:文本回归

    data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...

  4. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  5. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  6. Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性

    library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...

  7. Machine Learning for hackers读书笔记(八)PCA:构建股票市场指数

    library('ggplot2') prices <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\08-PC ...

  8. Machine Learning for hackers读书笔记(五)回归模型:预测网页访问量

    线性回归函数 model<-lm(Weight~Height,data=?) coef(model):得到回归直线的截距 predict(model):预测 residuals(model):残 ...

  9. Machine Learning for hackers读书笔记(四)排序:智能收件箱

    #数据集来源http://spamassassin.apache.org/publiccorpus/ #加载数据 library(tm)library(ggplot2)data.path<-'F ...

随机推荐

  1. .NET设计模式(5):工厂方法模式(Factory Method)(转)

    工厂方法模式(Factory Method) ——.NET设计模式系列之五 Terrylee,2004年1月2日 概述 在软件系统中,经常面临着“某个对象”的创建工作,由于需求的变化,这个对象的具体实 ...

  2. WSDL相关文档

    http://msdn.microsoft.com/en-us/library/ms996486.aspx http://msdn.microsoft.com/en-us/library/aa4685 ...

  3. nodeJs入门篇之认识nodejs

    摘要:将介绍如何利Javascript做为服务端脚本,通过Nodejs框架web开发.Nodejs框架是基于V8的引擎,是目前速度最快的Javascript引擎.chrome浏览器就基于V8,同时打开 ...

  4. 【中国互联网不眠夜】Struts2漏洞百出,OneRASP鼎力相助

    Struts2是一款优秀的网站框架,在互联网上有十分广泛的应用,近期apache官方发布了高危漏洞通告Apache Struts 任意代码执行漏洞(CVE-2016-3081,S2-032),该漏洞风 ...

  5. 整数划分 Integer Partition(一)

    话说今天百度面试,可能是由于我表现的不太好,面试官显得有点不耐烦,说话的语气也很具有嘲讽的意思,搞得我有点不爽.Whatever,面试中有问到整数划分问题,回答这个问题过程中被面试官搞的不胜其烦,最后 ...

  6. iOS打电话,发短信,发邮件,打开网址

    //调用自带mail [[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"mailto://admin@hzl ...

  7. ****RESTful API 设计最佳实践(APP后端API设计参考典范)

    http://blog.jobbole.com/41233/ 背景 目前互联网上充斥着大量的关于RESTful API(为方便,下文中“RESTful API ”简写为“API”)如何设计的文章,然而 ...

  8. HttpWebRequest模拟登陆,存储Cookie以便登录请求后使用

    [一篮饭特稀原创,转载请注明出自http://www.cnblogs.com/wanghafan/p/3284481.html] PostLogin :登录,并保存Cookie 1 public st ...

  9. Android 图片异步加载的体会,SoftReference已经不再适用

      在网络上搜索Android图片异步加载的相关文章,目前大部分提到的解决方案,都是采用Map<String, SoftReference<Drawable>>  这样软引用的 ...

  10. Junit单元测试学习笔记三

    一.     高级 Fixture 上一篇文章中我们介绍了两个 Fixture 标注,分别是 @Before 和 @After ,我们来看看他们是否适合完成如下功能:有一个类是负责对大文件(超过 50 ...