终于成功仿了一次Kalman滤波器
终于成功仿了一次Kalman滤波器
% observation, using a discrete Kalman filter.
%
% Version 1.0, June 30, 2004
%
% This tutorial function was written by Michael C. Kleder
% (Comments are appreciated at: public@kleder.com)
%
% INTRODUCTION
%
% Many people have heard of Kalman filtering, but regard the topic
% as mysterious. While it's true that deriving the Kalman filter and
% proving mathematically that it is "optimal" under a variety of
% circumstances can be rather intense, applying the filter to
% a basic linear system is actually very easy. This Matlab file is
% intended to demonstrate that.
%
% An excellent paper on Kalman filtering at the introductory level,
% without detailing the mathematical underpinnings, is:
% "An Introduction to the Kalman Filter"
% Greg Welch and Gary Bishop, University of North Carolina
% http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html
%
% PURPOSE:
%
% The purpose of each iteration of a Kalman filter is to update
% the estimate of the state vector of a system (and the covariance
% of that vector) based upon the information in a new observation.
% The version of the Kalman filter in this function assumes that
% observations occur at fixed discrete time intervals. Also, this
% function assumes a linear system, meaning that the time evolution
% of the state vector can be calculated by means of a state transition
% matrix.
%
% USAGE:
%
% s = kalmanf(s)
%
% "s" is a "system" struct containing various fields used as input
% and output. The state estimate "x" and its covariance "P" are
% updated by the function. The other fields describe the mechanics
% of the system and are left unchanged. A calling routine may change
% these other fields as needed if state dynamics are time-dependent;
% otherwise, they should be left alone after initial values are set.
% The exceptions are the observation vectro "z" and the input control
% (or forcing function) "u." If there is an input function, then
% "u" should be set to some nonzero value by the calling routine.
%
% SYSTEM DYNAMICS:
%
% The system evolves according to the following difference equations,
% where quantities are further defined below:
%
% x = Ax + Bu + w meaning the state vector x evolves during one time
% step by premultiplying by the "state transition
% matrix" A. There is optionally (if nonzero) an input
% vector u which affects the state linearly, and this
% linear effect on the state is represented by
% premultiplying by the "input matrix" B. There is also
% gaussian process noise w.
% z = Hx + v meaning the observation vector z is a linear function
% of the state vector, and this linear relationship is
% represented by premultiplication by "observation
% matrix" H. There is also gaussian measurement
% noise v.
% where w ~ N(0,Q) meaning w is gaussian noise with covariance Q
% v ~ N(0,R) meaning v is gaussian noise with covariance R
%
% VECTOR VARIABLES:
%
% s.x = state vector estimate. In the input struct, this is the
% "a priori" state estimate (prior to the addition of the
% information from the new observation). In the output struct,
% this is the "a posteriori" state estimate (after the new
% measurement information is included).
% s.z = observation vector
% s.u = input control vector, optional (defaults to zero).
%
% MATRIX VARIABLES:
%
% s.A = state transition matrix (defaults to identity).
% s.P = covariance of the state vector estimate. In the input struct,
% this is "a priori," and in the output it is "a posteriori."
% (required unless autoinitializing as described below).
% s.B = input matrix, optional (defaults to zero).
% s.Q = process noise covariance (defaults to zero).
% s.R = measurement noise covariance (required).
% s.H = observation matrix (defaults to identity).
%
% NORMAL OPERATION:
%
% (1) define all state definition fields: A,B,H,Q,R
% (2) define intial state estimate: x,P
% (3) obtain observation and control vectors: z,u
% (4) call the filter to obtain updated state estimate: x,P
% (5) return to step (3) and repeat
%
% INITIALIZATION:
%
% If an initial state estimate is unavailable, it can be obtained
% from the first observation as follows, provided that there are the
% same number of observable variables as state variables. This "auto-
% intitialization" is done automatically if s.x is absent or NaN.
%
%x = inv(H)*z
%P = inv(H)*R*inv(H')
%
% This is mathematically equivalent to setting the initial state estimate
% covariance to infinity.
%
% SCALAR EXAMPLE (Automobile Voltimeter):
%
% % Define the system as a constant of 12 volts:
function T
clear s
s.x = 12;
s.A = 1;
% % Define a process noise (stdev) of 2 volts as the car operates:
s.Q = 2^2; % variance, hence stdev^2
% Define the voltimeter to measure the voltage itself:
s.H = 1;
% % Define a measurement error (stdev) of 2 volts:
s.R = 2^2; % variance, hence stdev^2
%Do not define any system input (control) functions:
s.B = 0;
s.u = 0;
% % Do not specify an initial state:
s.x = nan;
s.P = nan;
% % Generate random voltages and watch the filter operate.
tru=[]; % truth voltage
for t=1:20
tru(end+1) = randn*2+12;
s(end).z = tru(end) + randn*2; % create a measurement
s(end+1)=kalmanf(s(end)); % perform a Kalman filter iteration
% end
% figure
% hold on
% grid on
% % plot measurement data:
hz=plot([s(1:end-1).z],'r');hold on
% % plot a-posteriori state estimates:
hk=plot([s(2:end).x],'b-');hold on
ht=plot(tru,'g-');hold on
legend('observations','Kalman output','true voltage',0)
title('Automobile Voltimeter Example')
% hold off
end
function s = kalmanf(s)
% set defaults for absent fields:
if ~isfield(s,'x'); s.x=nan*z; end
if ~isfield(s,'P'); s.P=nan; end
if ~isfield(s,'z'); error('Observation vector missing'); end
if ~isfield(s,'u'); s.u=0; end
if ~isfield(s,'A'); s.A=eye(length(x)); end
if ~isfield(s,'B'); s.B=0; end
if ~isfield(s,'Q'); s.Q=zeros(length(x)); end
if ~isfield(s,'R'); error('Observation covariance missing'); end
if ~isfield(s,'H'); s.H=eye(length(x)); end
if isnan(s.x)
% initialize state estimate from first observation
if diff(size(s.H))
error('Observation matrix must be square and invertible for state autointialization.');
end
s.x = inv(s.H)*s.z;
s.P = inv(s.H)*s.R*inv(s.H');
else
% This is the code which implements the discrete Kalman filter:
% Prediction for state vector and covariance:
s.x = s.A*s.x + s.B*s.u;
s.P = s.A * s.P * s.A' + s.Q;
% Compute Kalman gain factor:
K = s.P*s.H'*inv(s.H*s.P*s.H'+s.R);
% Correction based on observation:
s.x = s.x + K*(s.z-s.H*s.x);
s.P = s.P - K*s.H*s.P;
% Note that the desired result, which is an improved estimate
% of the sytem state vector x and its covariance P, was obtained
% in only five lines of code, once the system was defined. (That's
% how simple the discrete Kalman filter is to use.) Later,
% we'll discuss how to deal with nonlinear systems.
end
后来不过瘾,自己写了一个,没想到稍微改了一改竟然成功了,效果还不错
% xk=A•xk-1+B•uk+wk
% zk=H•xk+vk,
% p(w) ~ N(0,Q)
% p(v) ~ N(0,R),
% 预测
% x'k=A•xk+B•uk
% P'k=A•P(k-1)*AT + Q
% 修正
% Kk=P'k•HT•(H•P'k•HT+R)-1
% xk=x'k+Kk•(zk-H•x'k)
% Pk=(I-Kk•H)•P'k
%要注意的是:必须把系统状态和kalman滤波器内部预测的状态分开
function Test
A=[1 0.1;0 1];
B=0;
Xp=rand(2,1)*0.1;
X=[0 0]';
H=[1 0];
Q=eye(2)*1e-5;
R=eye(1)*0.1;
P=eye(2);% P'(k)
angle=[];
angle_m=[];
angle_real=[];
for i=1:500
angle_real=[angle_real X(1)]; %实际角度
[Xp,P]=Predict(A,Xp,P,Q);
X=A*X+rand(2,1)*1e-5;
z_m=H*X+rand(1,1)*0.1-0.05;
angle_m=[angle_m z_m(1)]; %测量的角度
[Xp,P]=Correct(P,H,R,X,z_m);
angle=[angle Xp(1)]; %预测的角度
end
t=1:500;
plot(t,angle,'r',t,angle_m,'g',t,angle_real,'b')
legend('预测值','测量值','实际值')
figure
plot(t,angle-angle_real,'r',t,angle_m-angle_real,'g')
legend('滤波后的误差','测量的误差')
title('误差分析')
xlabel('time');
ylabel('error');
function [Xk,Pk]=Predict(A,Xk,Pk_1,Q)
Xk=A*Xk;
Pk=A*Pk_1*A'+Q;
function [Xk,Pk]=Correct(Pk,H,R,Xk,zk)
Kk=Pk * H' * inv(H * Pk * H' + R);
Xk=Xk+ Kk*(zk-H*Xk);
Pk=(eye(size(Pk,1)) - Kk*H)*Pk;
这是状态图
这是误差分析
终于成功仿了一次Kalman滤波器的更多相关文章
- Kalman滤波器从原理到实现
Kalman滤波器的历史渊源 We are like dwarfs on the shoulders of giants, by whose grace we see farther than the ...
- Kalman滤波器原理和实现
Kalman滤波器原理和实现 kalman filter Kalman滤波器的直观理解[1] 假设我们要测量一个房间下一刻钟的温度.据经验判断,房间内的温度不可能短时大幅度变化,也就是说可以依经验认为 ...
- Redhat 5.7 安装 glibc debuginfo ,终于成功。
1) yum --enablerepo rhel-debuginfo install glibc-debuginfo 安装完之后,yum list 可以看出debuginfo 是 build 123, ...
- jvisualvm连接远程应用终于成功,附踩大坑记录!!(二:jmx方式)
一.问题概述 参考前一篇: jvisualvm连接远程应用终于成功,附踩大坑记录!!(一:jstatd方式) 这篇主要讲讲jmx方式. 二.启动前设置jmx参数 我这边拿tomcat举例,其余java ...
- jvisualvm连接远程应用终于成功,附踩大坑记录!!(一:jstatd方式)
一.问题概述 连接远程java应用除了jstatd方式,还有jmx方式.不必拘泥于一种,一种不行可以果断尝试另一种,兴许就行了. 姊妹篇在这: jvisualvm连接远程应用终于成功,附踩大坑记录!! ...
- 运动目标跟踪中kalman滤波器的使用
目标跟踪的kalman滤波器介绍 Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差.因此在运动目标跟踪中也被广泛使用.在视频处理的 ...
- 【计算机视觉】基于Kalman滤波器的进行物体的跟踪
预估器 我们希望能够最大限度地使用測量结果来预计移动物体的运动. 所以,多个測量的累积能够让我们检測出不受噪声影响的部分观測轨迹. 一个关键的附加要素即此移动物体运动的模型. 有了这个模型,我们不仅能 ...
- android studio1.3安装终于成功
本人机器是win7 32位旗舰版,4G内存.以前使用eclipse adt bundle开发Android程序感觉非常方便,但随着google对andriod studio支持力度加大,转向studi ...
- 折腾了好久的macos+apache+php+phpmyadmin 终于成功了!
由于最近需要布置mantis用来进行bug追踪,在此记录其过程. 由于PHP apache环境在Mac OS上是自带的,所以不需要另处下安装包,只需要简单配置一下即可. 首先打开终端输入命令: sud ...
随机推荐
- JS中函数的基础知识
函数 一. 函数定义 函数又叫方法,在程序里面函数是用来执行某些特定功能的代码.为了减少重复使用代码,可以把特定功能的代码做成函数,需要使用时拿出来调用.alert();就是一个很常见的.简单的函数 ...
- Nginx负载均衡介绍
Nginx真心牛逼 nginx不单可以作为强大的web服务器,也可以作为一个反向代理服务器,而且nginx还可以按照调度规则实现动态.静态页面的分离,可以按照轮询.ip哈希.URL哈希.权重等多种方式 ...
- magic_quotes_runtime 与 magic_quotes_gpc
magic_quotes_runtime 与 magic_quotes_gpc 这两个函数都是管理是否对数据进行特殊符号转义,但是他们针对的处理对象不同: magic_quotes_gpc的设定值将会 ...
- Codeforces Round #253 (Div. 2) D题
题目大意是选出一个其他不选,问问最大概率: 刚开始想到DP:F[I][J][0]:表示从 前I个中选出J个的最大值, 然后对于F[I][J][1]=MAX(F[I-1][J][1],F[I-1][J- ...
- centos mysql 操作
安装mysqlyum -y install mysql-server 修改mysql配置 vi /etc/my.cnf 这里会有很多需要注意的配置项,后面会有专门的笔记 暂时修改一下编码(添加在密码下 ...
- Unity 3D 游戏上线之后的流水总结
原地址:http://tieba.baidu.com/p/2817057297?pn=1 首先.unity 灯光烘焙 :Unity 3D FBX模型导入.选项Model 不导入资源球.Rig 不导入骨 ...
- mysql死锁,等待资源,事务锁,Lock wait timeout exceeded; try restarting transaction解决
前面已经了解了InnoDB关于在出现锁等待的时候,会根据参数innodb_lock_wait_timeout的配置,判断是否需要进行timeout的操作,本文档介绍在出现锁等待时候的查看及分析处理: ...
- POJ 2127
#include <iostream> #define MAXN 501 using namespace std; int a[MAXN],b[MAXN],ans[MAXN]; int G ...
- ScriptManager.RegisterStartupScript方法和Page.ClientScript.RegisterStartupScript() 区别
ScriptManager.RegisterStartupScript方法 如果页面中不用Ajax,cs中运行某段js代码方式可以是: Page.ClientScript.RegisterStartu ...
- lintcode:逆序对
题目 在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.给你一个数组,求出这个数组中逆序对的总数.概括:如果a[i] > a[j] 且 i < j, a[i] ...