[Papers]MHD, $\p_3\pi$, Lebesgue space [Jia-Zhou, JMAA, 2012]
$$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad 3\leq q\leq \infty. \eex$$
[Papers]MHD, $\p_3\pi$, Lebesgue space [Jia-Zhou, JMAA, 2012]的更多相关文章
- [Papers]MHD, $\p_3\pi$, Lebesgue space [Zhang-Li-Yu, JMAA, 2013]
$$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{3}{2}\leq q\leq 3 ...
- [Papers]MHD, $\p_3\pi$, Lebesgue space [Cao-Wu, JDE, 2010]
$$\bex \p_3\pi\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{12}{7},\quad \frac{12}{7} ...
- [Papers]NSE, $\n u_3$, Lebesgue space, [Pokorny, EJDE, 2003; Zhou, MAA, 2002]
$$\bex \n u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq \i ...
- [Papers]NSE, $u_3$, Lebesgue space [NNP, QM, 2002; Zhou, JMPA, 2005]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{1}{2},\quad 6< q\leq \inft ...
- [Papers]NSE, $\p_3u$, Lebesgue space [Cao, DCDSA, 2010]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{27}{16}\leq q\le ...
- [Papers]NSE, $\p_3u$, Lebesgue space [Kukavica-Ziane, JMP, 2007]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=2,\quad \frac{9}{4}\leq q\leq ...
- [Papers]NSE, $\p_3u$, Lebesgue space [Penel-Pokorny, AM, 2004]
$$\bex \p_3\bbu\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{2},\quad 2\leq q\leq ...
- [Papers]NSE, $u_3$, Lebesgue space [Jia-Zhou, NARWA, 2014]
$$\bex u_3\in L^\infty(0,T;L^\frac{10}{3}(\bbR^3)). \eex$$
- [Papers]NSE, $u_3$, Lebesgue space [Zhou-Pokorny, Nonlinearity, 2009]
$$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{3}{4}+\frac{1}{2q},\quad \fra ...
随机推荐
- phpeclipse常用快捷键
phpeclipse常用快捷键
- CentOS查看内核版本,位数,版本号
1)[root@localhost ~]# cat /proc/version Linux version 2.6.18-194.el5 (mockbuild@builder10.CentOS.org ...
- lua简化cocos2dx的Action动画序列
情景 今天写代码时,又要写一个很常见的动画,就是变大变小模拟那个弹性的赶脚,很常用但写起来挺麻烦,封装一下用起来就简单多了. 当然我也知道有缓动动画(EaseAction)可以实现反弹效果,但这不是重 ...
- Data Base 关于nosql的讲解
Data Base 关于nosql的讲解 nosql非关系型数据库. 优点: 1.可扩展 2.大数据量,高性能 3.灵活的数据模型 4.高可用 缺点: 1.不正式 2.不标准 非关系型数据库有哪些: ...
- JSU 2013 Summer Individual Ranking Contest - 5
JSU 2013 Summer Individual Ranking Contest - 5 密码:本套题选题权归JSU所有,需要密码请联系(http://blog.csdn.net/yew1eb). ...
- IO(二)
package com.bjsxt.io.buffered; import java.io.BufferedInputStream; import java.io.BufferedOutputStre ...
- NDK(7)NDK debugging without root access
from : http://ian-ni-lewis.blogspot.com/2011/05/ndk-debugging-without-root-access.html NDK debugging ...
- IE JS编程需注意的内存释放问题
1.给DOM对象添加的属性是一个对象的引用.范例:var MyObject = {};document.getElementById('myDiv').myProp = MyObject;解决方法:在 ...
- 用vi修改文件,保存文件时,提示“readonly option is set”的解决方法
来源:http://superuser.com/questions/300500/ubuntu-unable-to-edit-bashrc-file-because-of-readonly This ...
- HeadFirst Jsp 11 (部署WEB应用)
web 应用的目录结构要求很严, 各个内容只能放在它该放的地方, 所以, 移动一个web应用很让人头疼. 不过还是有办法, WAR文件, 代表web 归档, WAR其实就是一个JAR归档. 建立 WA ...