JetRail高铁乘客量预测——7种时间序列方法

数据获取:获得2012-2014两年每小时乘客数量

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt df = pd.read_csv('C:\\Users\\Style\\Desktop\\jetrail.csv', nrows=11856)
df.head()
print(df.head())

从2012年8月—2013年12月的数据中构造一个数据集

创建train and test文件用于建模。前14个月(2012年8月—2013年10月)用作训练数据,后两个月(2013年11月—2013年12月)用作测试数据。

以每天为单位聚合数据集

import pandas as pd
import matplotlib.pyplot as plt df = pd.read_csv('../profile/train2.csv',nrows=11856) train = df[0:10392] # 前14个月 一共10392个小时
test = df[10392:]
   #上表中的 datatime
df['Timestamp'] = pd.to_datetime(df['Datetime'], format='%d-%m-%Y %H:%M') # 4位年用Y,2位年用y
df.index = df['Timestamp']
df = df.resample('D').mean() #按日历采样,计算均值 train['Timestamp'] = pd.to_datetime(train['Datetime'], format='%d-%m-%Y %H:%M')
train.index = train['Timestamp']
train = train.resample('D').mean() test['Timestamp'] = pd.to_datetime(test['Datetime'], format='%d-%m-%Y %H:%M')
test.index = test['Timestamp']
test = test.resample('D').mean() train.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)
test.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)
plt.show()

结果如下  大致成上升趋势 

1.1 朴素法

如果数据集在一段时间内都很稳定,我们想预测第二天的价格,可以取前面一天的价格,预测第二天的值。这种假设第一个预测点和上一个观察点相等的预测方法就叫朴素法。

dd = np.asarray(train['Count'])
y_hat = test.copy()
y_hat['naive'] = dd[len(dd) - 1]
plt.figure(figsize=(12, 8))
plt.plot(train.index, train['Count'], label='Train')
plt.plot(test.index, test['Count'], label='Test')
plt.plot(y_hat.index, y_hat['naive'], label='Naive Forecast')
plt.legend(loc='best')
plt.title("Naive Forecast")
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat['naive'])) # 真实的Y和预测的Y值
print(rms)

43.91640614391676

1.2 简单平均法

我们经常会遇到一些数据集,虽然在一定时期内出现小幅变动,但每个时间段的平均值确实保持不变。这种情况下,我们可以预测出第二天的价格大致和过去天数的价格平均值一致。这种将预期值等同于之前所有观测点的平均值的预测方法就叫简单平均法。

y_hat_avg = test.copy()
y_hat_avg['avg_forecast'] = train['Count'].mean()
plt.figure(figsize=(12,8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['avg_forecast'], label='Average Forecast')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['avg_forecast']))
print(rms)

109.88526527082863

1.3 移动平均法

物品价格在一段时间内大幅上涨,但后来又趋于平稳。我们也经常会遇到这种数据集,比如价格或销售额某段时间大幅上升或下降。

y_hat_avg = test.copy()
y_hat_avg['moving_avg_forecast'] = train['Count'].rolling(60).mean().iloc[-1]
plt.figure(figsize=(16,8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['moving_avg_forecast'], label='Moving Average Forecast')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['moving_avg_forecast']))
print(rms)

46.72840725106963

1.4 简单指数平滑法(之后效果更佳)

from statsmodels.tsa.api import SimpleExpSmoothing

y_hat_avg = test.copy()
fit = SimpleExpSmoothing(np.asarray(train['Count'])).fit(smoothing_level=0.6, optimized=False)
y_hat_avg['SES'] = fit.forecast(len(test))
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['SES'], label='SES')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['SES']))
print(rms)

43.357625225228155

1.5 霍尔特线性趋势法

每个时序数据集可以分解为相应的几个部分:趋势(Trend),季节性(Seasonal)和残差(Residual)。任何呈现某种趋势的数据集都可以用霍尔特线性趋势法用于预测。

import statsmodels.api as sm

sm.tsa.seasonal_decompose(train['Count']).plot()
result = sm.tsa.stattools.adfuller(train['Count'])
plt.show()

我们将这两个方程相加,得出一个预测函数。我们也可以将两者相乘而不是相加得到一个乘法预测方程。当趋势呈线性增加和下降时,我们用相加得到的方程;当趋势呈指数级增加或下降时,我们用相乘得到的方程。实践操作显示,用相乘得到的方程,预测结果会更稳定,但用相加得到的方程,更容易理解

from statsmodels.tsa.api import Holt

y_hat_avg = test.copy()

fit = Holt(np.asarray(train['Count'])).fit(smoothing_level=0.3, smoothing_slope=0.1)
y_hat_avg['Holt_linear'] = fit.forecast(len(test)) plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['Holt_linear'], label='Holt_linear')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['Holt_linear']))
print(rms)

43.056259611507286

1.6 Holt-Winters季节性预测模型

在应用这种算法前,我们先介绍一个新术语。假如有家酒店坐落在半山腰上,夏季的时候生意很好,顾客很多,但每年其余时间顾客很少。因此,每年夏季的收入会远高于其它季节,而且每年都是这样,那么这种重复现象叫做“季节性”(Seasonality)。如果数据集在一定时间段内的固定区间内呈现相似的模式,那么该数据集就具有季节性。

from statsmodels.tsa.api import ExponentialSmoothing

y_hat_avg = test.copy()
fit1 = ExponentialSmoothing(np.asarray(train['Count']), seasonal_periods=7, trend='add', seasonal='add', ).fit()
y_hat_avg['Holt_Winter'] = fit1.forecast(len(test))
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['Holt_Winter']))
print(rms)

25.264160714051183

1.7 自回归移动平均模型(ARIMA)

指数平滑模型都是基于数据中的趋势和季节性的描述,而自回归移动平均模型的目标是描述数据中彼此之间的关系。ARIMA的一个优化版就是季节性ARIMA。它像Holt-Winters季节性预测模型一样,也把数据集的季节性考虑在内。

import statsmodels.api as sm

y_hat_avg = test.copy()
fit1 = sm.tsa.statespace.SARIMAX(train.Count, order=(2, 1, 4), seasonal_order=(0, 1, 1, 7)).fit()
y_hat_avg['SARIMA'] = fit1.predict(start="2013-11-1", end="2013-12-31", dynamic=True)
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['SARIMA'], label='SARIMA')
plt.legend(loc='best')
plt.show()

最终均方根误差

from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['SARIMA']))
print(rms)

26.069547371326845

基于python的数学建模---时间序列的更多相关文章

  1. 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)

    函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...

  2. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  3. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  4. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  5. Python小白的数学建模课-09 微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  6. Python小白的数学建模课-B5. 新冠疫情 SEIR模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...

  7. Python小白的数学建模课-B4. 新冠疫情 SIR模型

    Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...

  8. Python小白的数学建模课-A1.国赛赛题类型分析

    分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...

  9. Python小白的数学建模课-07 选址问题

    选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...

  10. Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型

    传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...

随机推荐

  1. KingbaseES ALTER TABLE 中 USING 子句的用法

    using子句用于在修改表字段类型的时候,进行显示的转换类型. 1.建表 create table t(id integer); 2.插入数据 insert into t select generat ...

  2. 从零开始搭建gitea代码管理平台

    Gitea,一款极易搭建的Git自助服务.如其名,Git with a cup of tea.跨平台的开源服务,支持Linux.Windows.macOS和ARM平台.配置要求低,甚至可以运行在树莓派 ...

  3. 使用mbr2gpt将MBR磁盘转换为GPT磁盘

    随着越来越多的新PC的到来,UEFI启动渐渐的取代了BIOS启动方式.不过UEFI需要从GPT磁盘启动,原来的MBR磁盘不行.如果你更换了硬件,只想把磁盘拿到新平台上用又不想重装系统的话就麻烦了.以前 ...

  4. 使用J2EE 登录实例开发

    我们先了解下Servlet的生命周期 Servlet部署在容器里,其生命周期由容器管理. 概括为以下几个阶段: 1)容器加载Servlet类. 当第一次有Web客户请求Servlet服务或当Web服务 ...

  5. 我的 Kafka 旅程 - 性能调优

    Producer 于 config/producer.properties 配置文件中的项 # 序列化数据压缩方式 [none/gzip/snappy/lz4/zstd] compression.ty ...

  6. Python 实现Tracert追踪TTL值

    Tracert 命令跟踪路由原理是IP路由每经过一个路由节点TTL值会减一,假设TTL值=0时数据包还没有到达目标主机,那么该路由则会回复给目标主机一个数据包不可达,由此我们就可以获取到目标主机的IP ...

  7. 数据结构之单链表(基于Java实现)

    链表:在计算机中用一组任意的存储单元存储线性表的数据元素称为链式存储结构,这组存储结构可以是连续的,也可以是不连续的,因此在存储数据元素时可以动态分配内存. 注:在java中没有指针的概念,可以理解为 ...

  8. 几个Caller-特性的妙用

    System.Runtime.CompilerServices命名空间下有4个以"Caller"为前缀命名的Attribute,我们可以将它标注到方法参数上自动获取当前调用上下文的 ...

  9. 一键上手时下最火AI作画工具

    摘要:在华为云ModelArts上, 无需考虑计算资源.环境的搭建,就算不懂代码,也能按照教程案例,通过Stable Diffusion成为艺术大师. 本文分享自华为云社区<跟着华为云Model ...

  10. 8.pygame-定时器

    使用定时器添加敌机 游戏启动后,每隔一秒出现一架敌方飞机 每架飞机向屏幕下方飞行,速度各不相同 没加敌机出现的水平位置也不进相同 当敌机从屏幕下方飞出,不会再飞回到屏幕中   定时器 pygame中使 ...