基于python的数学建模---时间序列
JetRail高铁乘客量预测——7种时间序列方法
数据获取:获得2012-2014两年每小时乘客数量
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt df = pd.read_csv('C:\\Users\\Style\\Desktop\\jetrail.csv', nrows=11856)
df.head()
print(df.head())
从2012年8月—2013年12月的数据中构造一个数据集
创建train and test文件用于建模。前14个月(2012年8月—2013年10月)用作训练数据,后两个月(2013年11月—2013年12月)用作测试数据。
以每天为单位聚合数据集
import pandas as pd
import matplotlib.pyplot as plt df = pd.read_csv('../profile/train2.csv',nrows=11856) train = df[0:10392] # 前14个月 一共10392个小时
test = df[10392:]
#上表中的 datatime
df['Timestamp'] = pd.to_datetime(df['Datetime'], format='%d-%m-%Y %H:%M') # 4位年用Y,2位年用y
df.index = df['Timestamp']
df = df.resample('D').mean() #按日历采样,计算均值 train['Timestamp'] = pd.to_datetime(train['Datetime'], format='%d-%m-%Y %H:%M')
train.index = train['Timestamp']
train = train.resample('D').mean() test['Timestamp'] = pd.to_datetime(test['Datetime'], format='%d-%m-%Y %H:%M')
test.index = test['Timestamp']
test = test.resample('D').mean() train.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)
test.Count.plot(figsize=(15,8), title= 'Daily Ridership', fontsize=14)
plt.show()
结果如下 大致成上升趋势
1.1 朴素法
如果数据集在一段时间内都很稳定,我们想预测第二天的价格,可以取前面一天的价格,预测第二天的值。这种假设第一个预测点和上一个观察点相等的预测方法就叫朴素法。
dd = np.asarray(train['Count'])
y_hat = test.copy()
y_hat['naive'] = dd[len(dd) - 1]
plt.figure(figsize=(12, 8))
plt.plot(train.index, train['Count'], label='Train')
plt.plot(test.index, test['Count'], label='Test')
plt.plot(y_hat.index, y_hat['naive'], label='Naive Forecast')
plt.legend(loc='best')
plt.title("Naive Forecast")
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat['naive'])) # 真实的Y和预测的Y值
print(rms)
43.91640614391676
1.2 简单平均法
我们经常会遇到一些数据集,虽然在一定时期内出现小幅变动,但每个时间段的平均值确实保持不变。这种情况下,我们可以预测出第二天的价格大致和过去天数的价格平均值一致。这种将预期值等同于之前所有观测点的平均值的预测方法就叫简单平均法。
y_hat_avg = test.copy()
y_hat_avg['avg_forecast'] = train['Count'].mean()
plt.figure(figsize=(12,8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['avg_forecast'], label='Average Forecast')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['avg_forecast']))
print(rms)
109.88526527082863
1.3 移动平均法
物品价格在一段时间内大幅上涨,但后来又趋于平稳。我们也经常会遇到这种数据集,比如价格或销售额某段时间大幅上升或下降。
y_hat_avg = test.copy()
y_hat_avg['moving_avg_forecast'] = train['Count'].rolling(60).mean().iloc[-1]
plt.figure(figsize=(16,8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['moving_avg_forecast'], label='Moving Average Forecast')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt
rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['moving_avg_forecast']))
print(rms)
46.72840725106963
1.4 简单指数平滑法(之后效果更佳)
from statsmodels.tsa.api import SimpleExpSmoothing y_hat_avg = test.copy()
fit = SimpleExpSmoothing(np.asarray(train['Count'])).fit(smoothing_level=0.6, optimized=False)
y_hat_avg['SES'] = fit.forecast(len(test))
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['SES'], label='SES')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['SES']))
print(rms)
43.357625225228155
1.5 霍尔特线性趋势法
每个时序数据集可以分解为相应的几个部分:趋势(Trend),季节性(Seasonal)和残差(Residual)。任何呈现某种趋势的数据集都可以用霍尔特线性趋势法用于预测。
import statsmodels.api as sm sm.tsa.seasonal_decompose(train['Count']).plot()
result = sm.tsa.stattools.adfuller(train['Count'])
plt.show()
from statsmodels.tsa.api import Holt y_hat_avg = test.copy() fit = Holt(np.asarray(train['Count'])).fit(smoothing_level=0.3, smoothing_slope=0.1)
y_hat_avg['Holt_linear'] = fit.forecast(len(test)) plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['Holt_linear'], label='Holt_linear')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['Holt_linear']))
print(rms)
43.056259611507286
1.6 Holt-Winters季节性预测模型
from statsmodels.tsa.api import ExponentialSmoothing y_hat_avg = test.copy()
fit1 = ExponentialSmoothing(np.asarray(train['Count']), seasonal_periods=7, trend='add', seasonal='add', ).fit()
y_hat_avg['Holt_Winter'] = fit1.forecast(len(test))
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['Holt_Winter']))
print(rms)
25.264160714051183
1.7 自回归移动平均模型(ARIMA)
指数平滑模型都是基于数据中的趋势和季节性的描述,而自回归移动平均模型的目标是描述数据中彼此之间的关系。ARIMA的一个优化版就是季节性ARIMA。它像Holt-Winters季节性预测模型一样,也把数据集的季节性考虑在内。
import statsmodels.api as sm y_hat_avg = test.copy()
fit1 = sm.tsa.statespace.SARIMAX(train.Count, order=(2, 1, 4), seasonal_order=(0, 1, 1, 7)).fit()
y_hat_avg['SARIMA'] = fit1.predict(start="2013-11-1", end="2013-12-31", dynamic=True)
plt.figure(figsize=(16, 8))
plt.plot(train['Count'], label='Train')
plt.plot(test['Count'], label='Test')
plt.plot(y_hat_avg['SARIMA'], label='SARIMA')
plt.legend(loc='best')
plt.show()
最终均方根误差
from sklearn.metrics import mean_squared_error
from math import sqrt rms = sqrt(mean_squared_error(test['Count'], y_hat_avg['SARIMA']))
print(rms)
26.069547371326845
基于python的数学建模---时间序列的更多相关文章
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python数学建模-02.数据导入
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
- Python小白的数学建模课-A1.国赛赛题类型分析
分析赛题类型,才能有的放矢. 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. 1. 数模竞赛国赛 A题类型分析 年份 题目 要 ...
- Python小白的数学建模课-07 选址问题
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
随机推荐
- alter role 导致的数据库无法登录问题
ALTER ROLE 用于更改一个数据库角色.只要改角色后续开始一个新会话,指定的值将会成为该会话的默认值,并且会覆盖 kingbase.conf中存在的值或者从命令行收到的值. 显性的更改角色的一 ...
- 阿里云Centos7部署私人CSGO服务器
大四毕业生,论文和答辩分别以1.8%的重复率和只答不辨的态度双双过关.现在就是在家等着学校发毕业证了.顺带学学驾驶...可是我这么一个喜欢折腾的人,怎么能够让自己接受这么无聊的咸鱼时光呢?因为这个寒假 ...
- 开源即时通讯GGTalk 8.0发布,增加Linux客户端,支持在统信UOS、银河麒麟上运行!
GGTalk在2021年推出7.0后,经过一年多时间的开发,终于推出8.0版本,实现了Linux客户端. 这几年,信创国产化的势头越来越猛,政府事企业单位都在逐步转向使用国产OS.国产CPU.国产数据 ...
- KMP&Z函数详解
KMP 一些简单的定义: 真前缀:不是整个字符串的前缀 真后缀:不是整个字符串的后缀 当然不可能这么简单的,来个重要的定义 前缀函数: 给定一个长度为\(n\)的字符串\(s\),其 \(前缀函数\) ...
- filebeat读取超链接日志 symlinks
filebeat读取超链接日志文件,还需要增加配置上额外的参数:symlinks: true 符号链接选项允许Filebeat除常规文件外,可以收集符号链接.收集符号链接时,即使报告了符号链接的路径, ...
- linux安装node和达梦数据库8
PS.本次测试只是为了项目需要,但是在部署和启动程序的时候发生了一系列的报错,由此记录下来为日后作参考 安装达梦数据库 1. 达梦数据库(DM8)简介 达梦数据库管理系统是武汉达梦公司推出的具有完全自 ...
- POJ2486 Apple Tree(树形背包)
从每个节点u出发后有两种情况:回到u和不回到u. dp数组设为三维,第一维是节点编号,第二维是从该节点开始走的步数,第三维1/0 表示是否回到该节点. 可以回到时:dp[u][j][1]=max(dp ...
- 记一次 .NET 某企业OA后端服务 卡死分析
一:背景 1.讲故事 前段时间有位朋友微信找到我,说他生产机器上的 Console 服务看起来像是卡死了,也不生成日志,对方也收不到我的httpclient请求,不知道程序出现什么情况了,特来寻求帮助 ...
- 「JOISC 2022 Day1」京都观光 题解
Solution 考虑从\((x_1,y_1)\)走到\((x_2,y_2)\)满足只改变一次方向,则容易求出先向南走当且仅当 \[\frac{a_{x_1} - a_{x_2}}{x_1 - x_2 ...
- 使用python获取window注册表值的方法
提供regfullpath的方法,可以自行封装个regpath的函数import loggingimport pywintypes import win32apiimport win32con def ...