EM算法简介

EM算法其实是一类算法的总称。EM算法分为E-Step和M-Step两步。EM算法的应用范围很广,基本机器学习需要迭代优化参数的模型在优化时都可以使用EM算法。

EM算法的思想和过程

E-Step:E的全称是Expectation,即期望的意思。E-step也是获取期望的过程。即根据现有的模型,计算各个观测数据输入到模型中的计算结果。这个过程称为期望值计算过程,即E过程。

M-Step:M的全称是Maximization,即最大化的意思。M-step也是期望最大化的过程。得到一轮期望值以后,重新计算模型参数,以最大化期望值。这个过程为最大化过程,即M过程。

最大化的意思是我们在使用这个模型时希望我们定义的函数能使得到的结果最大化,而结果越大越接近我们希望得到的结果。我们优化的目标也就是这些能得到最大值的函数。

常见的EM算法有:隐含马尔科夫模型的训练方法Baum-Welch算法;最大熵模型的训练方法GIS算法等。

EM算法结果

EM算法不一定能保证获得全局最优解,但如果我们优化的目标函数是一个凸函数,那么一定能保证得到全局最优解。否则可能获得局部最优解。因为如果优化的目标函数有多个峰值点,则如果优化到某个不是最高的峰值点处,则会无法再继续优化下去,这样获得的是局部最优解。

总结

EM算法只需要输入一些训练数据,同时定义一个最大化函数,接下来经过若干次迭代,就可以训练出我们需要的模型了。

参考

吴军《数学之美》
————————————————
原文链接:https://blog.csdn.net/lihaitao000/article/details/51894496

机器学习优化算法之EM算法的更多相关文章

  1. MM 算法与 EM算法概述

    1.MM 算法: MM算法是一种迭代优化方法,利用函数的凸性来寻找它们的最大值或最小值. MM表示 “majorize-minimize MM 算法” 或“minorize maximize MM 算 ...

  2. 【机器学习】K-means聚类算法与EM算法

    初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类.由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定 ...

  3. 【机器学习】GMM和EM算法

    机器学习算法-GMM和EM算法 目录 机器学习算法-GMM和EM算法 1. GMM模型 2. GMM模型参数求解 2.1 参数的求解 2.2 参数和的求解 3. GMM算法的实现 3.1 gmm类的定 ...

  4. 机器学习(七)EM算法、GMM

    一.GMM算法 EM算法实在是难以介绍清楚,因此我们用EM算法的一个特例GMM算法作为引入. 1.GMM算法问题描述 GMM模型称为混合高斯分布,顾名思义,它是由几组分别符合不同参数的高斯分布的数据混 ...

  5. Python实现机器学习算法:EM算法

    ''' 数据集:伪造数据集(两个高斯分布混合) 数据集长度:1000 ------------------------------ 运行结果: ---------------------------- ...

  6. 机器学习笔记—混合高斯和 EM 算法

    本文介绍密度估计的 EM(Expectation-Maximization,期望最大). 假设有 {x(1),...,x(m)},因为是无监督学习算法,所以没有 y(i). 我们通过指定联合分布 p( ...

  7. K-means聚类算法与EM算法

    K-means聚类算法 K-means聚类算法也是聚类算法中最简单的一种了,但是里面包含的思想却不一般. 聚类属于无监督学习.在聚类问题中,给我们的训练样本是,每个,没有了y. K-means算法是将 ...

  8. 机器学习十大算法之EM算法

    此文已由作者赵斌授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 由于目前论坛的Markdown不支持Mathjax,数学公式没法正常识别,文章只能用截图上传了...     ...

  9. 猪猪的机器学习笔记(十四)EM算法

    EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大 ...

随机推荐

  1. spring的依赖注入的四种方式,数组与集合注入;引用注入;内部bean注入

    三种注入方式 第一种: 基于构造函数 hi.java (bean) package test_one; public class hi { private String name; public hi ...

  2. 基于COCO数据集验证的目标检测算法天梯排行榜

    基于COCO数据集验证的目标检测算法天梯排行榜 AP50 Rank Model box AP AP50 Paper Code Result Year Tags 1 SwinV2-G (HTC++) 6 ...

  3. python3中map()函数用法

    python源码解释如下:map(func, *iterables) --> map objectMake an iterator that computes the function usin ...

  4. Java 替换PDF中的字体

    文档中可通过应用不同的字体来呈现不一样的视觉效果,通过字体来实现文档布局.排版等设计需要.应用字体时,可在创建文档时指定字体,也可以用新字体去替换文档中已有的字体.下面,以Java代码展示如何来替换P ...

  5. Flask 自建扩展

    自建扩展介绍 Flask扩展分两类 纯功能, 如: Flask-Login 提供用户认证 对已有的库和工具包装(简化继承操作,并提供有用的功能,更方便) 如: Flask-SQLAlchemy 包装了 ...

  6. 2W字长文吐血整理 Docker&云原生

    Docker 和 云原生 一.概念介绍 1.1 Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Win ...

  7. SQL从零到迅速精通【实用函数(3)】

    1.LOWER()函数 使用LOWER函数将字符串中所有字幕字符转换为小写,输入语句如下. SELECT LOWER('BEAUTIFUL'),LOWER('Well'); 2.UPPER()函数 S ...

  8. supervisor启动报错

    supervisor 启动失败报错 Error: Another program is already listening on a port that one of our HTTP servers ...

  9. 从零开始,开发一个 Web Office 套件(10):捕获键盘事件,输入文字

    这是一个系列博客,最终目的是要做一个基于 HTML Canvas 的.类似于微软 Office 的 Web Office 套件(包括:文档.表格.幻灯片--等等). 博客园:<从零开始, 开发一 ...

  10. LGP3449题解

    其实每个串都不是回文串也能做的说... 题意:给定 \(n\) 个互不相同的串,两两拼接一共能够拼出 \(n^2\) 个串,问这 \(n^2\) 个串中有几个回文串. 首先假设拼接出来的串是 \(AB ...