来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/reaching-points

题目描述

给定四个整数 sx , sy ,tx 和 ty,如果通过一系列的转换可以从起点 (sx, sy) 到达终点 (tx, ty),则返回 true,否则返回 false。

从点 (x, y) 可以转换到 (x, x+y)  或者 (x+y, y)。

示例 1:

输入: sx = 1, sy = 1, tx = 3, ty = 5
输出: true
解释:
可以通过以下一系列转换从起点转换到终点:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)
示例 2:

输入: sx = 1, sy = 1, tx = 2, ty = 2
输出: false
示例 3:

输入: sx = 1, sy = 1, tx = 1, ty = 1
输出: true

提示:

1 <= sx, sy, tx, ty <= 109

解题思路

很有趣的一道逆向思维题,如果正向来判断(sx, sy)到达(tx, ty)必然是十分困难的,如果是单次相加,那么时间复杂度会超出,如果是相乘,那么被乘数是无法确定的。但是如果从(tx, ty)反推回(sx, sy)是十分容易的,因为没必要关注中间相减的过程,直接使用取模运算就可以看出从(tx, ty)可以到达(sx, sy),如果使用单次相减就会超时。

逆推过程中,当x和y相等的时候,那么坐标就无法进行变换了,因为下一次逆推的结果坐标中会出现0,不符合题意,所以在x和y不相等的时候,同时,x和y分别都比sx,sy大的时候,将大的那个值对小的那个取模,逆推回去,在最终无法变换时进行状态的判断。

如果(x,y)等于(sx,sy)很显然,可以到达(sx,sy),如果x == sx,那么此时可以操作的坐标仅仅就是y,需要判断sy是否可以通过相加n个x等于了y,此时将y-sy对x取模,判断是否等于0就可以了,不能使用y对x取模判断余数为sy这种方法,因为如果sy可以被x整除,会产生错误的判断。同理,对于y == sy的情况也一样,如果x和y都不等于sx和sy,那么x和y无法达到sx和sy。

代码展示

class Solution {
public:
bool check(int x, int y, int sx, int sy)
{
if(x == sx && y == sy)
return true;
else if(x == sx && y > sy)
return (y - sy) % x == 0;
else if(y == sy && x > sx)
return (x - sx) % y == 0;
else
return false; }
bool reachingPoints(int sx, int sy, int tx, int ty) {
int x = tx, y = ty;
while(x != y && x > sx && y > sy)
{
if(x > y)
x = x % y;
else
y = y % x;
}
return check(x, y, sx, sy);
}
};

运行结果

LeetCode-780 到达终点的更多相关文章

  1. Java实现 LeetCode 780 到达终点(逻辑题)

    780. 到达终点 从点 (x, y) 可以转换到 (x, x+y) 或者 (x+y, y). 给定一个起点 (sx, sy) 和一个终点 (tx, ty),如果通过一系列的转换可以从起点到达终点,则 ...

  2. Java实现 LeetCode 754 到达终点数字(暴力+反向)

    754. 到达终点数字 在一根无限长的数轴上,你站在0的位置.终点在target的位置. 每次你可以选择向左或向右移动.第 n 次移动(从 1 开始),可以走 n 步. 返回到达终点需要的最小移动次数 ...

  3. LeetCode 754. Reach a Number到达终点数字

    题目 在一根无限长的数轴上,你站在0的位置.终点在target的位置. 每次你可以选择向左或向右移动.第 n 次移动(从 1 开始),可以走 n 步. 返回到达终点需要的最小移动次数. 示例 1: 输 ...

  4. [Swift]LeetCode754. 到达终点数字 | Reach a Number

    You are standing at position 0 on an infinite number line. There is a goal at position target. On ea ...

  5. [Swift]LeetCode780. 到达终点 | Reaching Points

    A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y). Given a ...

  6. hdoj 1010 Tempter of the Bone【dfs查找能否在规定步数时从起点到达终点】【奇偶剪枝】

    Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

  7. 领扣-754 到达终点数字 Reach a Number MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  8. 一只青蛙一次可以跳1阶或者2阶,n阶,有多少种到达终点的方式。

    前两天面试遇到的一个题,当时没有想清楚,今天想了一下,po出来: # -*-encoding:utf-8-*- import sys end = 0 # 终点 cnt = 0 # 统计组合方式 def ...

  9. [LeetCode] 780. Reaching Points 到达指定点

    A move consists of taking a point (x, y) and transforming it to either (x, x+y) or (x+y, y). Given a ...

  10. LeetCode 780. Reaching Points

    题目链接:https://leetcode.com/problems/reaching-points/ 题意:给定操作可以使点(x,y)变为点(x+y,y)或者点(x,x+y).现已知初始点(sx,s ...

随机推荐

  1. express 为所有路由添加 405 method not allowd 响应

    背景知识 HTTP Status Code 405 405 Method not allowed The resource was requested using a method that is n ...

  2. BIO和NIO的区别和原理

    BIO BIO(Blocking IO) 又称同步阻塞IO,一个客户端由一个线程来进行处理 当客户端建立连接后,服务端会开辟线程用来与客户端进行连接.以下两种情况会造成IO阻塞: 服务端会一直阻塞,直 ...

  3. 使用 Visual Studio 2022 调试Dapr 应用程序

    使用Dapr 编写的是一个多进程的程序,使用Visual Studio 调试起来可能会比较困难,因为 Visual Studio 默认只会把你当前设置的启动项目的启动调试. 好在有Visual Stu ...

  4. DHorse日志收集原理

    实现原理 基于k8s的日志收集主要有两种方案,一是使用daemoset,另一种是基于sidecar.两种方式各有优缺点,目前DHorse是基于daemoset实现的.如图1所示: 图1 在每个k8s集 ...

  5. ABP AutoMapper与自定义Mapping

    对象映射 在工作中,需要将相似的对象映射到另一个对象,这样我们来看一个最繁琐的映射方式 例: public class UserAppService : ApplicationService { pr ...

  6. easygui 之integerbox()、enterbox()、multenterbox() 三种输入函数的使用

    1.integerbox()函数:只可输入整数的输入框,默认输入范围为0-99 integerbox(msg="", title=" ", default=No ...

  7. (已转)C++知识图谱

  8. [常用工具] Caffe ssd常见问题集合

    1 Check failed: a <= b <0 vs -1.19209e-007> 网上办法是注释掉 CHECK_LE(a, b),但是这样会出大问题.解决办法见2. 如果注释掉 ...

  9. [python] 基于matplotlib实现圆环图的绘制

    圆环图本质上是一个中间切出一块区域的饼状图.可以使用python和matplotlib库来实现.本文主要介绍基于matplotlib实现圆环图.本文所有代码见:Python-Study-Notes # ...

  10. 特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置【一】-文本匹配算法、知识融合学术界方案、知识融合业界落地方案、算法测评KG生产质量保障

    特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障 ...