Luogu3904 三只小猪 (组合数学,第二类斯特林数,高精)
即使\(n<=50\),斯特林数也会爆long long。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long
#define ON_DEBUG
#ifdef ON_DEBUG
#define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin);
#else
#define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ;
#endif
struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std;
const int N = 1007;
int a[N], b[N];
string add(string A, string B){
string S;
Fill(a, 0), Fill(b, 0);
int lenA = A.size(), lenB = B.size();
R(i,0,lenA - 1) a[i] = A[lenA - i - 1] ^ '0';
R(i,0,lenB - 1) b[i] = B[lenB - i - 1] ^ '0';
int len = Max(lenA, lenB);
R(i,0,len - 1){
a[i] += b[i];
a[i + 1] += a[i] / 10;
a[i] %= 10;
}
if(a[len]) ++len;
nR(i,len - 1,0) S += a[i] + '0';
return S;
}
string mul(string A, int B){
string S;
int len = A.size();
Fill(a, 0);
R(i,0,len - 1) a[i] = A[len - i - 1] ^ '0';
int res = 0;
R(i,0,len - 1){
a[i] = a[i] * B + res;
res = a[i] / 10;
a[i] = a[i] % 10;
}
while(res){
a[len++] = res % 10;
res /= 10;
}
nR(i,len - 1, 0) S += a[i] + '0';
return S;
}
string f[107][107];
int n, m;
int main(){
//FileOpen();
int n, m;
io >> n >> m;
if(n < m){
printf("0");
return 0;
}
if(n == m){
printf("1");
return 0;
}
R(i,1,n){
f[i][1] = "1";
R(j,2,m){
f[i][j] = add(f[i - 1][j - 1], mul(f[i - 1][j], j));
}
}
cout << f[n][m];
return 0;
}
Luogu3904 三只小猪 (组合数学,第二类斯特林数,高精)的更多相关文章
- BZOJ 2159: Crash 的文明世界(组合数学+第二类斯特林数+树形dp)
传送门 解题思路 比较有意思的一道数学题.首先\(n*k^2\)的做法比较好想,就是维护一个\(x^i\)这种东西,然后转移的时候用二项式定理拆开转移.然后有一个比较有意思的结论就是把求\(x^i\) ...
- Gym - 101147G G - The Galactic Olympics —— 组合数学 - 第二类斯特林数
题目链接:http://codeforces.com/gym/101147/problem/G G. The Galactic Olympics time limit per test 2.0 s m ...
- 【BZOJ5093】图的价值(第二类斯特林数,组合数学,NTT)
[BZOJ5093]图的价值(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 单独考虑每一个点的贡献: 因为不知道它连了几条边,所以枚举一下 \[\sum_{i=0}^{n-1}C_{n-1 ...
- 【BZOJ4555】求和(第二类斯特林数,组合数学,NTT)
[BZOJ4555]求和(第二类斯特林数,组合数学,NTT) 题面 BZOJ 题解 推推柿子 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)·j!·2^j\] \[=\sum_{i= ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- HDU2512 一卡通大冒险 —— 第二类斯特林数
题目链接:https://vjudge.net/problem/HDU-2512 一卡通大冒险 Time Limit: 2000/1000 MS (Java/Others) Memory Lim ...
- 【CF961G】Partitions 第二类斯特林数
[CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
- BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...
- 8-机器分配(hud4045-组合+第二类斯特林数)
http://acm.hdu.edu.cn/showproblem.php?pid=4045 Machine schedulingTime Limit: 5000/2000 MS (Java/Othe ...
随机推荐
- 如何使用picGo+typora配置云笔记
PicGo的使用 安装 picGo 2.3版本 (window可用)---官网有点慢,已经下载到个人仓库 https://gitee.com/lht1132950411/study/blob/mast ...
- STM32 CubeMx使用教程
一.STM32CubeMX 简介 STM32CubeMX 是 ST 意法半导体近几年来大力推荐的STM32 芯片图形化配置工具,目的就是为了方便开发者, 允许用户使用图形化向导生成C 初始化代码,可以 ...
- SpringSecurity的 loginProcessingUrl为什么不能用
前情提要: 我在做一个springsecurity动态鉴权的项目时, 据网上说配置了 loginProcessingUrl("/login1"); 以后 就可以自定义login的请 ...
- SpringMVC请求流程源码分析
一.SpringMVC使用 1.工程创建 创建maven工程. 添加java.resources目录. 引入Spring-webmvc 依赖. <dependency> <group ...
- 测试open
// 此处,返回的 undefined 是 JS 中的一个值 return undefined } // 这种写法是明确指定函数返回值类型为 void,与上面不指定返回值类型相同 const add ...
- easyui combobox重复渲染问题
当一个页面有两个easyui combobox存在时,并且同时给两个combobox赋相同值,某些easyui的版本会导致其中一个无法切换选项. 解决办法,分两步赋值,可解决问题
- MYSQL中IF IN语句
以下代码摘自后台管理系统中的一部分SQL语句: 当取数状态为1或2时,才展示取数时间,否则,取数时间展示为空 当申报状态为2.3.4或5时,才展示申报时间,否则,申报时间展示为空 select A.Q ...
- VScode运行总是显示running状态
一.每次点击运行都显示code is already running,而且键盘也没有办法输入 二.解决办法 注意:记得重新启动VScode
- 「笔记」折半搜索(Meet in the Middle)
思想 先搜索前一半的状态,再搜索后一半的状态,再记录两边状态相结合的答案. 暴力搜索的时间复杂度通常是 \(O(2^{n})\) 级别的.但折半搜索可以将时间复杂度降到 \(O(2 \times 2^ ...
- 广西省行政村边界shp数据/广西省乡镇边界/广西省土地利用分类数据/广西省气象数据/降雨量分布数据/太阳辐射数据
数据下载链接:数据下载链接 广西壮族自治区,地处中国南部,北回归线横贯中部,属亚热带季风气候区.南北以贺州--东兰一线为界,此界以北属中亚热带季风气候区,以南属南亚热带季风气候区. 数据范围:全 ...