c++ 乘法逆元
主要参考:OI-WIKI
为什么要逆元
当一个题目让你求方案数时常要取余,虽然
\((a+b)\% p=(a\% p+b\% p)\%p\)
\((a-b)\% p=(a\% p-b\% p)\%p\)
\((a\times b)\% p=(a\%p\times b\%p)\%p\)
但是
\((\dfrac{a}{b})\%p\ne(\dfrac{a\%p}{b\%p})\%p\)
由于会出现这种情况,所以就要逆元了
一般情况下,当\(ax=1\)时,x 是 a 的倒数,\(x=\dfrac{1}{a}\)
毕竟是取余,所以当\(ax\equiv 1\pmod p\)时, x 叫做 a 关于 p 的逆元,用 \(a^{-1}\) 表示
于是 \((\dfrac{a}{b})\%p=(a\%p\times b^{-1}\%p)\%p\)
这样就把除法转换成乘法,解决了问题
如何求逆元
前提:\(\gcd(a,p)=1\) (本蒟蒻现在才发现模数这么奇怪原来有意图,如)
费马小定理
\(\because a^p\equiv a\pmod p \\ \therefore a^{p-2}\equiv\dfrac{1}{a}\pmod p\)
证明:OI-WIKI(蒟蒻不会)
所以说\(a^{-1}\equiv a^{p-2}\pmod p\)
复杂\(O(\log p)\)
扩展欧几里得
\(ax+py=1\)的一组解 (x,y) ,x 是 a 关于 p 的逆元, y 是 p 关于 a 的逆元
证明:两边同时模 p
\(\ \ \ \ \ \ \ \ \ \ \ ax+py=1\\ ax\%p+py\%p=1\%p\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ax\%p=1\%p\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ax\equiv 1\pmod p\)
所以 x 是 a 关于 p 的逆元,反之可以证明 y
复杂\(O(\log p)\)
连续的逆元
连续的逆元
如果直接暴力求,效率低,很有可能超时,如何线性(\(O(n)\))求呢?
首先 \(1^{-1}\equiv 1\pmod p\)
然后,设 \(p=k*i+r,r<i,l<i<p\) ,放到\(\pmod p\) 下就成了 \(k*i+r\equiv 0\pmod p\)
两边同时乘上\(i^{-1}\)和\(r^{-1}\)可得
\(k*i*i^{-1}*r^{-1}+r*i^{-1}*r^{-1}\equiv 0\pmod p\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ k*r^{-1}+i^{-1}\equiv 0 \pmod p\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i^{-1}\equiv -k*r^{-1}\pmod p\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ i^{-1}\equiv -\lfloor\dfrac{i}{p}\rfloor*(p\mod i)^{-1} \pmod p\)
于是就可以从前面推出当前的逆元了,\(A[1]=1,A[i]=(p-p/i)*A[p\%i]\)
用 \(p-\lfloor\dfrac{p}{i}\rfloor\)防止出现负数,时间复杂度\(O(n)\)
阶乘的逆元
可以先处理 \(n!\) 的逆元,可以发现对于一个 \(1\le i<n\),都有\(\dfrac{1}{i!}=\dfrac{1}{(i+1)!}*(i+1)\)
所以 \(i!\)的逆元\(A[i]=A[i+1]*(i+1)\%p\),A[n] 先求出来,时间复杂度\(O(\log p+n)\)
求任意 n 个数的逆元
先算出前缀积 \(s_i\) 并预处理出 \(s_n\) 的逆元 \(sv_n\) ,
与阶乘的逆元相同,\(sv_i=sv_{i+1}*a_{i+1}\%p,1\le i<n\) 用这种抵消的方法可以\(O(n)\)处理出\(sv\)
求出了\(sv\),\(a_i^{-1}\)可以用\(s_{i-1}*sv_i\)求得,时间复杂度\(O(\log p+n)\)
c++ 乘法逆元的更多相关文章
- Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)
题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数
1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...
- HDU 5651 计算回文串个数问题(有重复的全排列、乘法逆元、费马小定理)
原题: http://acm.hdu.edu.cn/showproblem.php?pid=5651 很容易看出来的是,如果一个字符串中,多于一个字母出现奇数次,则该字符串无法形成回文串,因为不能删减 ...
- Codeforces 543D Road Improvement(树形DP + 乘法逆元)
题目大概说给一棵树,树的边一开始都是损坏的,要修复一些边,修复完后要满足各个点到根的路径上最多只有一条坏的边,现在以各个点为根分别求出修复边的方案数,其结果模1000000007. 不难联想到这题和H ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- 51Nod 1256 乘法逆元 Label:exgcd
1256 乘法逆元 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K ...
- hdu 2669 Romantic (乘法逆元)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU3037 Saving Beans(Lucas定理+乘法逆元)
题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...
随机推荐
- C语言---魔方阵
魔方阵的定义:在n*n的方阵中,每一行的和=每一列的和=对角线的和.(本文中涉及的n为大于3的奇数). 例如3*3的魔方阵为: 5*5的魔方阵为: 如何写魔方阵呢? 1.数字1位于第一行的正中间2.下 ...
- python入门-开始
1.为啥要学Python? 各种语言的优劣势对比视频版:https://www.bilibili.com/video/BV1y3411r7pX/?spm_id_from=autoNext 各种语言的优 ...
- LC-977
给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序. 示例 1: 输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,1 ...
- 为vscode开发一款svn右键菜单扩展
在我平时的工作中会经常用到svn blame这个命令,但是vscode现有的svn扩展普遍都不能自定义右键菜单. 所以我产生一个想法:自己动手为vscode开发一款svn的扩展来定制右键菜单,本文记录 ...
- MySQL学习day3随笔
索引在数据量不大的时候体现不出来,数据很多的时候区别明显 1 select * from app_user where `name`='用户9999';-- 0.053 sec 2 select * ...
- 原生微信小程序里类似于计算属性写法
可直接在wxml文件里直接写入直接调用.变量只支持var命名,不支持let const </view> <view class="wx_bgc" ...
- Linux中权限对于文件和目录的区别
Linux系统中的权限对于文件和目录来说,是有一定区别的 下面先列举下普通文件对应的权限 1)可读r:表示具有读取.浏览文件内容的权限,例如,可以对文件执行 cat.more.less.head.ta ...
- Nginx下载文件指定文件名称
配置 location ^~/TEMP/ { alias/share/files/; if ($request_uri ~* ^.*\/(.*)\.(txt|doc|pdf|rar|gz|zip|do ...
- 深入浅出聊Taier—大数据分布式可视化DAG任务调度系统
导读: 上周,袋鼠云数栈全新技术开源规划--DTMO(DTstack Meetup Online)的第一场直播圆满完成.袋鼠云数栈大数据开发专家.Taier项目主导人偷天为大家带来了<Taier ...
- 【多线程与高并发原理篇:3_java内存模型】
1. 概述 Java 内存模型即 Java Memory Model,简称 JMM.从抽象的角度来看,JMM 定义了线程和主内存之间的抽象关系,线程之间的共享变量存储在主内存中,每个线程都有一个私有的 ...