聚合分析

聚合分析是数据库中重要的功能特性,完成对一个查询的集中数据的聚合计算。如:最大值、最小值、求和、平均值等等。对一个数据集求和,算最大最小值等等,在ES中称为指标聚合,而对数据做类似关系型数据库那样的分组(group by),在ES中称为分桶。

语法:

aggregations" : {
"<aggregation_name>" : { <!--聚合的名字 -->
"<aggregation_type>" : { <!--聚合的类型 -->
<aggregation_body> <!--聚合体:对哪些字段进行聚合 -->
}
[,"meta" : { [<meta_data_body>] } ]? <!--元 -->
[,"aggregations" : { [<sub_aggregation>]+ } ]? <!--在聚合里面在定义子聚合 --> }
[,"<aggregation_name_2>" : { ... } ]*<!--聚合的名字 -->
}

aggregations可以简写为aggs。

指标聚合

示例1:查询所有商品里最贵的价格

size就填0就行。

POST /item/_search
{
"size":0,
"aggs": {
"max_price": {
"max": {
"field": "price"
}
}
}
}

示例2:文档计数

POST /item/_count
{
"query": {
"range": {
"price": {
"gte": 10,
"lte": 5000
}
}
}
}

示例3:统计某字段有值的文档数

POST /item/_search?size=0
{
"aggs": {
"price_count": {
"value_count": {
"field": "price"
}
}
}
}

示例4:用cardinality值去重计数

如果有price重复的,就只会统计去重后的数量

POST /item/_search?size=0
{
"aggs":{
"price_count":{
"cardinality": {
"field": "price"
}
}
}
}

示例5:stats统计count、max、min、avg、sum5个值

POST /item/_search?size=0
{
"aggs":{
"price_stats":{
"stats": {
"field": "price"
}
}
}
}

结果如下:

{
"took" : 3,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"price_stats" : {
"count" : 5,
"min" : 2333.0,
"max" : 6888.0,
"avg" : 4059.2,
"sum" : 20296.0
}
}
}

示例6:extended stats,stats的增强版,增加了平方和、方差、标准差、平均值加/减两个标准差的区间。

POST /item/_search?size=0
{
"aggs":{
"price_stats":{
"extended_stats": {
"field": "price"
}
}
}
}

查询结果:

{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"price_stats" : {
"count" : 5,
"min" : 2333.0,
"max" : 6888.0,
"avg" : 4059.2,
"sum" : 20296.0,
"sum_of_squares" : 9.9816722E7,
"variance" : 3486239.7599999993,
"std_deviation" : 1867.1474928349928,
"std_deviation_bounds" : {
"upper" : 7793.494985669986,
"lower" : 324.9050143300142
}
}
}
}

示例7:Percentiles 占比百分位对应的值统计


POST /item/_search?size=0
{
"aggs":{
"price_percents":{
"percentiles": {
"field": "price" }
}
}
} #指定分位值
POST /item/_search?size=0
{
"aggs":{
"price_percents":{
"percentiles": {
"field": "price",
"percents": [
1,
5,
25,
50,
75,
95,
99
]
}
}
}
}

查询结果:

......
"aggregations" : {
"price_percents" : {
"values" : {
"1.0" : 2333.0000000000005,
"5.0" : 2333.0,
"25.0" : 2599.25,
"50.0" : 2688.0,
"75.0" : 5996.25,
"95.0" : 6888.0,
"99.0" : 6888.0
}
}
}
}

Percentiles rank 统计值小于等于指定值的文档占比

price小于3000和5000的占比

POST /item/_search?size=0
{
"aggs":{
"price_percents":{
"percentile_ranks": {
"field": "price"
, "values": [3000,5000]
}
}
}
}

桶聚合

他执行的是对文档分组的操作,把满足相关特性的文档分到一个桶里,即桶分。输出结果往往是一个个包含多个文档的桶。

示例1:分组求平均值

POST /item/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 50,
"to": 100
},
{
"from": 2000,
"to": 3000
},
{
"from": 3000,
"to": 5000
}
]
},
"aggs": {
"average_price": {
"avg": {
"field": "price"
}
}
}
}
}
}

查询结果:

{
"took" : 1,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 5,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"group_by_price" : {
"buckets" : [
{
"key" : "50.0-100.0",
"from" : 50.0,
"to" : 100.0,
"doc_count" : 0,
"average_price" : {
"value" : null
}
},
{
"key" : "2000.0-3000.0",
"from" : 2000.0,
"to" : 3000.0,
"doc_count" : 3,
"average_price" : {
"value" : 2569.6666666666665
}
},
{
"key" : "3000.0-7000.0",
"from" : 3000.0,
"to" : 7000.0,
"doc_count" : 2,
"average_price" : {
"value" : 6293.5
}
}
]
}
}
}

示例2:分组的文档个数统计

POST /item/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 50,
"to": 100
},
{
"from": 2000,
"to": 3000
},
{
"from": 3000,
"to": 7000
}
]
},
"aggs": {
"average_price": {
"value_count": {
"field": "price"
}
}
}
}
}
}

示例3:使用having语法

POST /item/_search
{
"size": 0,
"aggs": {
"group_by_price": {
"range": {
"field": "price",
"ranges": [
{
"from": 50,
"to": 100
},
{
"from": 2000,
"to": 3000
},
{
"from": 3000,
"to": 7000
}
]
},
"aggs": {
"average_price": {
"avg": {
"field": "price"
}
},
"having":{
"bucket_selector": {
"buckets_path": {
"avg_price":"average_price"
},
"script": {
"source": "params.avg_price >=2600"
}
}
}
} }
}
}

Elasticsearch学习系列四(聚合搜索)的更多相关文章

  1. Elasticsearch学习系列三(搜索案例实战)

    Query DSL Es提供了基于JSON的完整查询DSL(Domain Specific Language 特定域的语言)来定义查询.将查询DSL视为查询的AST(抽象语法树).它由两种子句组成: ...

  2. scrapy爬虫学习系列四:portia的学习入门

    系列文章列表: scrapy爬虫学习系列一:scrapy爬虫环境的准备:      http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_python_00 ...

  3. DocX开源WORD操作组件的学习系列四

    DocX学习系列 DocX开源WORD操作组件的学习系列一 : http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_sharp_001_docx1.htm ...

  4. .net reactor 学习系列(四)---.net reactor应用场景

    原文:.net reactor 学习系列(四)---.net reactor应用场景         前面已经学习了.net reactor一些基础知识,现在准备学习下实际的应用场景,只是简单的保护和 ...

  5. ElasticSearch实战系列四: ElasticSearch理论知识介绍

    前言 在前几篇关于ElasticSearch的文章中,简单的讲了下有关ElasticSearch的一些使用,这篇文章讲一下有关 ElasticSearch的一些理论知识以及自己的一些见解. 虽然本人是 ...

  6. 【Elasticsearch学习】文档搜索全过程

    在ES执行分布式搜索时,分布式搜索操作需要分散到所有相关分片,若一个索引有3个主分片,每个主分片有一个副本分片,那么搜索请求会在这6个分片中随机选择3个分片,这3个分片有可能是主分片也可能是副本分片, ...

  7. Identity Server4学习系列四之用户名密码获得访问令牌

    1.简介 Identity Server4支持用户名密码模式,允许调用客户端使用用户名密码来获得访问Api资源(遵循Auth 2.0协议)的Access Token,MS可能考虑兼容老的系统,实现了这 ...

  8. elasticsearch系列四:搜索详解(搜索API、Query DSL)

    一.搜索API 1. 搜索API 端点地址 从索引tweet里面搜索字段user为kimchy的记录 GET /twitter/_search?q=user:kimchy 从索引tweet,user里 ...

  9. Elasticsearch学习之深入聚合分析四---案例实战

    1. 需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99 tp50:50%的请求的耗时最长在多长时间tp90:90%的请求的耗时最长在多长时间tp99:99%的请 ...

随机推荐

  1. Cookie&&Session&&jsp入门

    会话技术 会话:一次会话中包含多次请求和响应. 一次会话:浏览器第一次给服务器资源发送请求,会话建立,直到有一方断开为止 功能:在一次会话的范围内的多次请求间,共享数据 方式: 客户端会话技术:Coo ...

  2. Codeforces Round #306 (Div. 2), problem: (B) Preparing Olympiad【dfs或01枚举】

    题意: 给出n个数字,要求在这n个数中选出至少两个数字,使得它们的和在l,r之间,并且最大的与最小的差值要不小于x.n<=15 Problem - 550B - Codeforces 二进制 利 ...

  3. C#+Access 员工信息管理--简单的增删改查操作和.ini配置文件的读写操作。

    1.本程序的使用的语言是C#,数据库是Access2003.主要是对员工信息进行简单的增删改查操作和对.ini配置文件的读写操作. 2.代码运行效果如下: 功能比较简单.其中在得到查询结果后,在查询结 ...

  4. Linux下安装并使用jumpserver跳板机

    堡垒机介绍: 官方网站:https://www.jumpserver.org/ 在一个特定网络环境下,为了保障网络和数据不受外界入侵和破坏,而运用各种技术手段实时收集和监控网络环境中每一个组成部分的系 ...

  5. 观察者模式与Google Guava EventBus实现

    概述 观察者模式又被称为发布-订阅(Publish/Subscribe)模式,属于行为型模式的一种. 它定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象.这个主题对象在状态变化时,会 ...

  6. WPF行为基础

    理解行为 复杂的UI效果(缩放.拖拽.平滑等)通过样式与触发器比较难以实现,通过引入行为模型来实现.使用行为也可以处理UI操作之外的业务 程序集引用 System.Windows.Interactiv ...

  7. Linux命令篇 - sed 命令

    sed sed - stream editor for filtering and transforming text: sed:利用脚本来处理.编辑文本文件: 格式:sed [OPTION]... ...

  8. python+pytest接口自动化(15)-日志管理模块loguru简介

    python自带日志管理模块logging,使用时可进行模块化配置,详细可参考博文Python日志采集(详细). 但logging配置起来比较繁琐,且在多进行多线程等场景下使用时,如果不经过特殊处理, ...

  9. 1903021121-刘明伟 实验二 JAVA第2周作业—代码插入

    项目 内容 课程班级博客链接 19信计班(本)  作业要求链接  第2周作业 要求 截图(只截运行结果) 扩展阅读 https://www.cnblogs.com/thelovelybugfly/p/ ...

  10. async用法

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...