Given $p\in M$, locally, there exists a diffemorphism of $T_M$ and $B_r(p)\subset$, this is the most important geometric mapping in Riemannian geometry, it is called the Gauss exponential mapping. It reveals enough geometric information near $p\in M$. In the following, we always assume that $M$ is complete.

Firstly, we need the definition of geodesic line. We only give the equation of it:
\begin{align}
\nabla_{\gamma'(t)}\gamma'(t)=0.
\end{align}
In local coordinate it can be written as
\begin{align}
x_k''(t)+\Gamma_{ij}^kx_i'(t)x_j'(t)=0.
\end{align}
This is a nonlinear ode, which can be solve locally with initial data.

The Gauss mapping is defined as
\begin{align}
exp:\ v\in T_pM\rightarrow M.
\end{align}

The most important property is the Gauss lemma.

\textbf{Gauss Lemma}
\begin{align}
\langle (dexp_p)_v(v),(dexp_p)_v(w)\rangle_{exp_p(v)}=\langle v,w\rangle_p.
\end{align}

Using the Gauss mapping and radial geodesic line, we get the most important coordinate in calculation, that is the normal coordinate. In fact, for any $a=(a_1,a_2,..,a_n)\in \varphi(U)$, we have
\begin{align}
x_ioexp_p(a)=a_i,\ \ i=1,...,n.
\end{align}
The radial geodesic line $exp_p(ta)$ has the parametric equation as
\begin{align}
x_i(t)=ta_i,
\end{align}
and plug it into the geodesic line equation, we get
\begin{align}
x_k''(t)+x'_i(t)x'_j(t)\Gamma_{ij}^k(ta)=0.
\end{align}
Let $t=0$, we get $a_ia_j\Gamma_{ij}^k(0)=0$. It follows that $\Gamma_{ij}^k(0)=0$ and $\frac{g_{ij}}{\partial x_k}(0)=0$, $g_{ij}(0)=delta_{ij}$.

Now we will turn to another topic, i.e., Jacobi field. After reading the book written by Weihuan Chen, and rethinking the process, we have some main idea to demonstrate.
(1) Firstly, what is called a Jacobi field, it comes from the geodesic line variation. It turn out that we call the vector field $J(t)$ along the geodesic line as Jacobi field if it satisfies the equation
\begin{align}
J''(t)-R(\gamma'(t),J)\gamma'(t)=0.
\end{align}
Recall that $\gamma(t)$ is a geodesic line.
It should notice that in the deduce process, the equation comes from the induced connection's compatibility, like
\begin{equation}
[\partial_t,\partial_s]=0,\nonumber
\end{equation}
and the definition of curvature operator, like
\begin{align}
R(X,Y)Z=\nabla_X \nabla_YZ-\nabla_Y\nabla_XZ-\nabla_{[X,Y]}Z.\nonumber
\end{align}

Secondly, the Jocobi equation is a second order linear equation, it can be uniquely solved by change it to a linear first ode systems, which can be uniquely solved in the whole interval $[a,b]$ by Picard iteration. One thing should be emphasized that for linear ode, the Cauchy problem and the two ends point are different, the later one may causes nonuniqueness of solutions. It is a $2n$ dimension linear space. Note that let $f(t)=<J(t),\gamma'(t)>$, we get
\begin{align}
f''(t)=\langle J''(t),\gamma'(t)\rangle =\langle R(\gamma'(t),J(t))\gamma'(t),\gamma'(t)\rangle=0,
\end{align}
Then we have
\begin{align}
\langle J(t),\gamma'(t)\rangle =\lambda+\mu t,
\end{align}
if we use the $\gamma'(t)$ is the normal geodesic line and $t$ is the arc length parameter, it it easy to check that
\begin{align}
J(t)-\langle J(t),\gamma'(t)\rangle \gamma'(t)
\end{align}
still satisfies the Jacobi equation and it is a Jacobi field perpendicular to $\gamma'(t)$. Another existence result is the two ends ode, \textbf{if $q$ is not the conjugate point of $p$, then the Jacobi is uniquely determined by its value at $p$ and $q$.} It also should note that if $q$ is the conjugate to $p$, if and only if there exists nonzero Jacobi field along the geodesic line $\gamma(t)$ such that $J(t)$ are zero at $p$ and $q$ (At this time $J(t)$ is perpendicular to $\gamma'(t)$ along the geodesic line.

Thirdly, every Jocobi field can be generated by the geodesic variation, its proof need the uniqueness of the Jocobi equation. Especially, if the initial data $J(0)=0$, its geodesic variation can be written expressed by
\begin{align}
\phi(t,s)=exp_{p}\Big[t\big(\gamma'(0)+sJ'(0)\big)\Big].
\end{align}
This time, $J(t)$ can be written as
\begin{align}
J(t)=d\phi_{(t,0)}(\partial_s)=\Big(dexp_p\Big)_{t\gamma'(0)}\Big(tJ'(0)\Big)=t\Big(dexp_p\Big)_{t\gamma'(0)}\Big(J'(0)\Big).
\end{align}

This property is great! This formula gives a precise geometric interpretation of the Jocobi field. After the exponential mapping, the length of Jacobi field(with initial data is zeor) reflects the curvature of the manifold near $p\in M$. More precise formula are as follows.

Let $\gamma'(0)=V$ and $J'(0)=W$, $J'(0)=0$. By the above argument, we have
\begin{align}
J(t)=\Big(dexp_p\Big)_{tV}\Big(tW\Big).
\end{align}
Then
\begin{align}
|J(t)|^2=|W|^2t^2+\frac{1}{3}\langle R(V,W)V,W\rangle t^4+o(t^4).
\end{align}
The proof involves the Taylor expansion. Let $f(t)=|J(t)|^2=\langle J(t),J(t)\rangle$. Taking derivative repeatedly and using the Jocobi equation will derive the formula.In fact, $f(0)=0,f'(0)=0$, and
\begin{align}
f''(t)=2\langle J''(t),J(t)\rangle+2\langle J'(t),J'(t)\rangle\Longrightarrow f''(0)=2\langle W,W \rangle.
\end{align}
Differentiate the identity again, we have
\begin{align}
f'''(t)=2\langle J'''(t),J(t)\rangle+6\langle J''(t),J'(t)\rangle\Longrightarrow f'''(0)=0
\end{align}
and
\begin{align}
f''''(t)&=2\langle J''''(t),J(t)\rangle+8\langle J'''(t),J'(t)\rangle+6\langle J''(t),J''(t)\rangle\\
&\Longrightarrow f''''(0)=8\langle J'''(0),J'(0)\rangle\nonumber
\end{align}
Recall that
\begin{align}
J''(t)=R(\gamma'(t),J(t))\gamma'(t),
\end{align}
then
\begin{align}
\langle J'''(t),J'(t)\rangle=&\langle\nabla_{\gamma'(t)}\left(R(\gamma'(t),J(t))\gamma'(t)\right),J'(t)\rangle\\
=&\nabla_{\gamma'(t)}\Big( R(\gamma'(t),J(t))\gamma'(t),J'(t)\Big)-\langle R(\gamma'(t),J(t))\gamma'(t),J''(t)\rangle\nonumber\\
=&(\nabla_{\gamma'(t)}R)(\gamma'(t),J(t),\gamma'(t),J'(t))+R(\gamma'(t),J'(t),\gamma'(t),J'(t))\nonumber\\
&=(\nabla_{\gamma'(t)}R)(\gamma'(t),J(t),\gamma'(t),J'(t))+\langle R(\gamma'(t),J'(t))\gamma'(t)),J'(t)\rangle\nonumber
\end{align}
where we have used the definition of $\nabla R$. Note that $J(0)=0$, then
\begin{align*}
(\nabla R)(\gamma'(0),J(0),\gamma'(0),J'(0),\gamma'(0))=0,
\end{align*}
i.e.,
\begin{align*}
(\nabla_{\gamma'(t)} R)(\gamma'(t),J(t),\gamma'(t),J'(t))|_{t=0}=0.
\end{align*}
In fact, we can prove
\begin{align}
\nabla_{\gamma'(t)}(R(\gamma'(t),J(t))\gamma'(t))(0)=(R(\gamma'(t),J'(t))\gamma'(t))_{t=0}.
\end{align}

It follows that
\begin{align}
\langle J'''(0),J'(0)\rangle=\langle R(\gamma'(0),J'(0))\gamma'(0),J'(0)\rangle=\langle R(V,W)V,W\rangle.
\end{align}
Then the asymptotic expansion follows from Taylor' formula clearly.

It seems reveal the mystery. Differential Geometry is to differentiate it and differentiate it again and again.

Finally, after the argument as above, by the geodesic coordinate, we have $\frac{\partial}{\partial \theta_i}$($i=1,...,n-1$) are Jacobi field. This follows from the linearity of the map $(dexp)_{tV}(\cdot)$. As in the book of Hamilton's Ricci flow, let
\begin{align}
h_{ij}=\langle\frac{\partial}{\partial \theta_i},\frac{\partial}{\partial \theta_j}\rangle,
\end{align}
for $i,j=1,...,n-1$.
it is not hard to check that
\begin{align}
h_{ij}=-\Gamma_{ij}^n=\frac{1}{2}\frac{\partial g_{ij}}{\partial r},
\end{align}
and
\begin{align}
H=g^{ij}h_{ij}=\frac{1}{2}g^{ij}\frac{\partial g_{ij}}{\partial r}=\frac{\partial \log\sqrt{g}}{\partial r}=\frac{\partial \log J(r,\theta)}{\partial r}.
\end{align}

Now we go to the symmetric two linear form. It is note hard to see that if $X,Y$ are the Jacobi field along the geodesic line, then
\begin{align}
\langle X'(t),Y(t)\rangle-\langle X(t),Y'(t)\rangle\equiv constant
\end{align}
on $\gamma(t)$.

If $Y$ is any smooth vector field along the geodesic line, we define
\begin{align}
I(Y)=\int_0^l\langle Y'(t),Y'(t)\rangle+R(\gamma'(t),Y)\gamma'(t),Y\rangle dt.
\end{align}
It should note the this is related to the second derivative of the arc length variation with fixed two end point, i.e.,
\begin{align}
\frac{d^2L(t,s)}{dt^2}|_{t=0}=I(U^\perp,U\perp),
\end{align}
where $U$ is the transversal variation field.

Now polarized $I$, we have
\begin{align}
I(V,W)=\int_0^l\langle V'(t),W'(t)\rangle+\langle R(\gamma'(t),V)\gamma'(t),W\rangle dt.
\end{align}
Obviously, it is a symmetric two linear form. The fundamental lemma of two linear form it as follows,which will be using in the proof of comparison theorem.
Lemma:
If the exists no conjugate point along normal geodesic line $\gamma(t)$, and $J(t)$ is the Jacobi field along $\gamma(t)$. If $X(t)$ is a field along $\gamma(t)$ with $X(0)=J(0)$ and $X(l)=Y(l)$, then
\begin{align}
I(X,X)\geq I(J,J)
\end{align}
with inequality if and only if $X=J$.

Once we have this minimality of the index form of Jacobi field, we can prove the Rauch's comparison theorem. In Hongxi Wu's book, it gives the ode systems comparison which unified various comparison theorem, see also in Jianguo Cao's book. If $A(t)$ is a $n-1$ order square matrix of the coefficients of the Jacobi fields, then $A'(t)A(t)$ is symmetric matrix.

In fact, the Hessian comparison and Laplacian comparison theorem is related to index form as follows
\begin{align*}
D^2r(J(b),J(b))&=SSr-\nabla_{\nabla_SS}r\\
&=S\langle S,\nabla r\rangle-\langle \nabla_SS,\nabla r\rangle\\
&=S\langle S,T\rangle-\langle \nabla_SS,T\rangle\\
&=\langle S,\nabla_ST\rangle\\
&=\langle S,\nabla_TS\rangle\\
&=\langle J(b),J'(b)\rangle.
\end{align*}

[Rauch comparison theorem] Let $\gamma:[0,b]\rightarrow M$,$\tilde{\gamma}:[0,b]\rightarrow \tilde{M}$ are all normal geodesic line, and $dim(M)=dim(\tilde{M})$; Let $J,\tilde{J}$ are the Jacobi field along $\gamma,\tilde{\gamma}$ respectively, and $J(0)=0$, $\tilde{J}(0)=0$, $J'(0)\bot \gamma'(0)$,$\tilde{J}'(0)\bot \tilde{\gamma}'(0)$, $|J'(0)|=|\tilde{J}'(0)|$; $\gamma$ doesn't contain the conjugate point along $\gamma$. and $\tilde{K}(t)\leq K(t)$. Then
\begin{align}
|\tilde{J}(t)|\geq |J(t)|.
\end{align}

Before the proof of Rauch's comparison theorem, we need a technique lemma.
Lemma:
Suppose the assumption of the theorem holds. Let $J$,$\tilde{J}(t)$ are normal Jacobi field along $\gamma,\tilde{\gamma}$ respectively, such that $J(0)=0$, $\tilde{J}(0)=0$ and such that for some $\beta\in[0,b]$, $|J(b)|=|\tilde{J}(b)|$, then
\begin{align}
\langle J'(b),J(b)\rangle\leq \langle \tilde{J}'(b),\tilde{J}(b)\rangle.
\end{align}

Recall that
\begin{align*}
I(J,J)&=\int_0^b\langle J'(t),J'(t)\rangle+\langle R(\gamma'(t),J)\gamma'(t),J\rangle dt\\
&=\int_0^b\langle J'(t),J'(t)\rangle+\langle J''(t),J\rangle dt\\
&=\langle J'(t),J(t)\rangle\Big|_{t=0}^{t=b}\\
&=\langle J'(b),J(b)\rangle,
\end{align*}
Then it is not hard to see that the lemma can be prove by the Jacobi comparison theorem.

Now we give the skeleton of the proof. Consider $g(t)=\frac{|\tilde{J}(t)|^2}{|J(t)|^2}$ for $t\in(0,b]$, using L.Hospital's rule twice, we have $g(t)\rightarrow 1$ as $t$ tends to $0_+$. Differentiate $g(t)$, for $t=\beta\in(0,b]$, we get
\begin{align}
g'(\beta)=\frac{\frac{\langle \tilde{J}'(\beta),\tilde{J}(\beta)\rangle}{|\tilde{J}(\beta)|^2}-\frac{\langle J'(\beta),J(\beta)\rangle}{|J(\beta)|^2}}{|\tilde{J}(\beta)|^2|J(\beta)|^4}.
\end{align}
We only need to show
\begin{align}
\frac{\langle \tilde{J}'(\beta),\tilde{J}(\beta)\rangle}{|\tilde{J}(\beta)|^2}\geq\frac{\langle J'(\beta),J(\beta)\rangle}{|J(\beta)|^2}.
\end{align}
Let $J_1(t)=\frac{J(t)}{|J(\beta)|}$, $\tilde{J}_1(t)=\frac{\tilde{J}(t)}{|\tilde{J}(\beta)|}$, by the previous lemma, we have
\begin{align}
\langle J_1'(b),J_1(b)\rangle\leq \langle \tilde{J}_1'(b),\tilde{J}_1(b)\rangle,
\end{align}
which is exactly the inequality we need.

One more thing, we should note that the Hodge Laplace act on form although is the some as the Berltrami-Laplace, but it is completely different from the covariant Laplace for $1$ forms, such as $df$.

For $r=dist(x,p)$, we have $|\nabla r|=1$ near $p\in M$, by the Bochner's formula, we get
\begin{align}
0=|Hess(r)|^2+\langle\nabla \Delta r,\nabla r\rangle+Ric(\nabla r,\nabla r).
\end{align}
Note that
\begin{align}
\Delta r=\sum_{i=1}^{n-1}\sum_{j=1}^{n-1}g^{ij}h_{ij}=H=\frac{\partial \log J(r,\theta)}{\partial r},
\end{align}
which is a very useful geometric formula in comparison theorem.

By Cauchy's inequality and the geodesic polar coordinate, we have
\begin{align}
(n-1)|Hess(r)|^2\geq(\Delta r)^2 ,
\end{align}
we obtain
\begin{align}
0\geq\frac{\partial}{\partial r}\left(\Delta r\right)+(\Delta r)^2+Ric(\nabla r,\nabla r).
\end{align}
If $Ric\geq (n-1)K$, we have
\begin{align}
0\geq\frac{\partial}{\partial r}\left(\Delta r\right)+(\Delta r)^2+(n-1)K.
\end{align}

Comparison Theorem in Riemannian geometry的更多相关文章

  1. <<Differential Geometry of Curves and Surfaces>>笔记

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  2. <Differential Geometry of Curves and Surfaces>(by Manfredo P. do Carmo) Notes

    <Differential Geometry of Curves and Surfaces> by Manfredo P. do Carmo real line Rinterval I== ...

  3. [家里蹲大学数学杂志]第269期韩青编《A Basic Course in Partial Differential Equations》 前五章习题解答

    1.Introduction 2.First-order Differential Equations Exercise2.1. Find solutons of the following inti ...

  4. PDF分享:国外优秀数学教材选评

    <国外优秀数学教材选评>推荐书目下载 具体内容请查看原内容: http://www.library.fudan.edu.cn/wjzx/list/373-1-20.htm 或者http:/ ...

  5. 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

    1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...

  6. 【分享】《美国数学本科生,研究生基础课程参考书目(个人整理)》[DJVU][VERYCD]

    目录: 第一学年 几何与拓扑: 1.James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级: 2.Basic Topology by Armstrong ...

  7. manifold learning

    MDS, multidimensional scaling, 线性降维方法, 目的就是使得降维之后的点两两之间的距离尽量不变(也就是和在原是空间中对应的两个点之间的距离要差不多).只是 MDS 是针对 ...

  8. 图书源代码下载: Modern Differential Geometry of CURVES and SURFACES with Mathematica

    http://alpha01.dm.unito.it/personalpages/abbena/gray/ Contents   1. Curves in the Plane |   2. Famou ...

  9. [翻译]Shape comparison language

        link: http://www.cnblogs.com/yhlx125/p/3635623.html   Shape comparison language 首先说说我遇到的一个问题: IR ...

  10. [翻译]Shape comparison language[转]

        link: http://www.cnblogs.com/yhlx125/p/3635623.html   Shape comparison language 首先说说我遇到的一个问题: IR ...

随机推荐

  1. Python实战项目6-后端多方式登录接口/手机登录接口

    为开源项目共享代码 步骤: 1先fork开源项目 2clone下来,修改代码,进行提交 3提交pr,等作者同意 Pycharm 使用Git 右键文件会列出Git命令 登录注册功能分析 多方式登录接口: ...

  2. I2C接口

    I2C是一种多向控制总线,它是由PHILIPS公司在二十世纪八十年代初设计出来的,利用该总线可实现多主机系统所需的裁决和高低速设备同步等功能,是一种高性能的串行总线.I2C总线只用两根双向传输线就可以 ...

  3. B站【挽救小白第一季】前端代码记录笔记

    1. 新建工程命令: $ vue init mpvue/mpvue-quickstart my-project 参考mpvue官方快速入门:http://mpvue.com/mpvue/quickst ...

  4. 框架和Nginx

    分布式:micorservice.framework. spring security Nginx 方向代理:正向代理就是客户端通过代理访问不同的服务器例如访问外网,反向代理就是客户端直接访问反向代理 ...

  5. 实验五Elasticsearch+Kibana展示爬虫数据

    安装elasticsearch-rtf Elasticsearch-rtf相比于elasticsearch而言多加了一些插件,因此我们选择安装Elasticsearch-rtf是一个不错的选择.在安装 ...

  6. vue实现随机生成图形验证码

    效果展示 安装插件 npm i identify 定义组件 verificationCode.vue <template> <!-- 图形验证码 --> <div cla ...

  7. js实现禁止浏览器后退

    试了网上不少的js禁止浏览器后退的代码,发现只有下面的一种效果还是可以的. <script language="javascript"> history.pushSta ...

  8. (mysql笔记)GROUP_CONCAT() 把多行数据合并

    不合并查询: 合并查询: SELECT GROUP_CONCAT(id) FROM orderinfo WHERE enterpriseid = 2265 AND shopid =0 AND orde ...

  9. vue-cli 根据不同的环境打包

    根据项目需要,通过vue-cli中的npm run build 打包到不同的环境,例如测试环境,预发布环境,线上环境,根据process.env分别进行接口的调用 vue-cli 中build中bui ...

  10. TCAM and CAM memory usage inside networking devices(转)

    TCAM and CAM memory usage inside networking devices Valter Popeskic Equipment and tools, Physical la ...