Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明
Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明
作者: Grey
原文地址:
博客园:Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明
CSDN:Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明
基于 JDK 的 API 自己实现 NIO 编程,需要一个线程池来不断监听端口。接收到新连接之后,这条连接上数据的读写会在另外一个线程池中进行。
在 Netty 实现的服务端中, 有如下经典代码
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
ServerBootstrap b = new ServerBootstrap();
// 设置服务端的线程模型。
// bossGroup 负责不断接收新的连接,将新的连接交给 workerGroup 来处理。
b.group(bossGroup, workerGroup)
其中 bossGroup 对应的就是监听端口的线程池,在绑定一个端口的情况下,这个线程池里只有一个线程;workerGroup 对应的是连接的数据读写的线程。
通过 debug 并设置断点的方式,我们来查看下创建 NioEventLoopGroup 的核心过程,
在没有指定线程数的情况下new NioEventLoopGroup()
会调用如下构造方法
public NioEventLoopGroup() {
this(0);
}
即传入 0,然后一路跟下去,发现调用了MultithreadEventLoopGroup
的如下逻辑
protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args);
}
由于我们传入的nThreads == 0
,所以获取DEFAULT_EVENT_LOOP_THREADS
的值,在MultithreadEventLoopGroup
中,DEFAULT_EVENT_LOOP_THREADS
的初始化逻辑如下
private static final int DEFAULT_EVENT_LOOP_THREADS;
static {
DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
"io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));
if (logger.isDebugEnabled()) {
logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
}
}
在nThreads == 0
的情况下,那么 NioEventLoopGroup 的默认线程的个数为 CPU 的核数乘以 2,即:NettyRuntime.availableProcessors() * 2
。
继续跟下去,可以看到 NioEventLoopGroup 调用了如下的构造方法,其核心代码如下
protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
EventExecutorChooserFactory chooserFactory, Object... args) {
……
// 创建ThreadPerTaskExecutor:ThreadPerTaskExecutor表示每次调用execute()方法的时候,都会创建一个线程。
if (executor == null) {
executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
}
……
// 2.创建NioEventLoop:NioEventLoop对应线程池里线程的概念,这里其实就是用一个for循环创建的。
children = new EventExecutor[nThreads];
……
for (int i = 0; i < nThreads; i ++) {
……
children[i] = newChild(executor, args);
……
}
// 3.创建线程选择器:线程选择器的作用是确定每次如何从线程池中选择一个线程,也就是每次如何从NioEventLoopGroup中选择一个NioEventLoop。
chooser = chooserFactory.newChooser(children);
……
}
这个构造方法包括了三个内容
创建 ThreadPerTaskExecutor:ThreadPerTaskExecutor 主要是用来创建线程。
创建 NioEventLoop:NioEventLoop 对应线程池里线程的概念。
创建线程选择器:线程选择器的作用是确定每次如何从线程池中选择一个线程,也就是每次如何从 NioEventLoopGroup 中选择一个 NioEventLoop。
首先,我们看 ThreadPerTaskExecutor 如何创建线程,核心代码如下
public final class ThreadPerTaskExecutor implements Executor {
private final ThreadFactory threadFactory;
public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
this.threadFactory = ObjectUtil.checkNotNull(threadFactory, "threadFactory");
}
@Override
public void execute(Runnable command) {
threadFactory.newThread(command).start();
}
}
这里的 threadFactory 就是前面传入的newDefaultThreadFactory()
,这个方法定义了默认线程的一些基本信息,一路追踪到DefaultThreadFactory
中
public DefaultThreadFactory(String poolName, boolean daemon, int priority, ThreadGroup threadGroup) {
ObjectUtil.checkNotNull(poolName, "poolName");
if (priority < Thread.MIN_PRIORITY || priority > Thread.MAX_PRIORITY) {
throw new IllegalArgumentException(
"priority: " + priority + " (expected: Thread.MIN_PRIORITY <= priority <= Thread.MAX_PRIORITY)");
}
prefix = poolName + '-' + poolId.incrementAndGet() + '-';
this.daemon = daemon;
this.priority = priority;
this.threadGroup = threadGroup;
}
// 创建线程,将 JDK 的 Runnable 包装成 FastThreadLocalRunnable
@Override
public Thread newThread(Runnable r) {
Thread t = newThread(FastThreadLocalRunnable.wrap(r), prefix + nextId.incrementAndGet());
try {
if (t.isDaemon() != daemon) {
t.setDaemon(daemon);
}
if (t.getPriority() != priority) {
t.setPriority(priority);
}
} catch (Exception ignored) {
// Doesn't matter even if failed to set.
}
return t;
}
可以看到 Netty 的线程实体是由 ThreadPerTaskExecutor 创建的,ThreadPerTaskExecutor 每次执行 execute 的时候都会创建一个 FastThreadLocalThread 的线程实体。
接下来是创建 NioEventLoop,Netty 使用 for 循环来创建 nThreads 个 NioEventLoop,通过前面的分析,我们可能已经猜到,一个NioEventLoop对应一个线程实体,即 Netty 自己封装的 FastThreadLocalThread。
来到 NioEventLoop 的构造方法
NioEventLoop(NioEventLoopGroup parent, Executor executor, SelectorProvider selectorProvider,
SelectStrategy strategy, RejectedExecutionHandler rejectedExecutionHandler,
EventLoopTaskQueueFactory taskQueueFactory, EventLoopTaskQueueFactory tailTaskQueueFactory) {
super(parent, executor, false, newTaskQueue(taskQueueFactory), newTaskQueue(tailTaskQueueFactory),
rejectedExecutionHandler);
......
final SelectorTuple selectorTuple = openSelector();
......
}
即创建了一个 Selector,Selector 是 NIO 编程里最核心的概念,一个 Selector 可以将多个连接绑定在一起,负责监听这些连接的读写事件,即多路复用。
继续往上调用构造方法
protected SingleThreadEventExecutor(EventExecutorGroup parent, Executor executor,
boolean addTaskWakesUp, Queue<Runnable> taskQueue,
RejectedExecutionHandler rejectedHandler) {
......
this.taskQueue = ObjectUtil.checkNotNull(taskQueue, "taskQueue");
......
}
NioEventLoop 重写了 taskQueue 的创建逻辑
private static Queue<Runnable> newTaskQueue0(int maxPendingTasks) {
// This event loop never calls takeTask()
return maxPendingTasks == Integer.MAX_VALUE ? PlatformDependent.<Runnable>newMpscQueue()
: PlatformDependent.<Runnable>newMpscQueue(maxPendingTasks);
}
private static Queue<Runnable> newTaskQueue(
EventLoopTaskQueueFactory queueFactory) {
if (queueFactory == null) {
return newTaskQueue0(DEFAULT_MAX_PENDING_TASKS);
}
return queueFactory.newTaskQueue(DEFAULT_MAX_PENDING_TASKS);
}
即创建一个 MPSC 队列,
MPSC 队列,Selector,NioEventLoop,这三者均为一对一关系。
接下来是创建线程选择器,
chooser = chooserFactory.newChooser(children);
这里的选择器是
protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
}
中的DefaultEventExecutorChooserFactory.INSTANCE
,进入
private static boolean isPowerOfTwo(int val) {
return (val & -val) == val;
}
@Override
public EventExecutorChooser newChooser(EventExecutor[] executors) {
if (isPowerOfTwo(executors.length)) {
return new PowerOfTwoEventExecutorChooser(executors);
} else {
return new GenericEventExecutorChooser(executors);
}
}
Netty 通过判断 NioEventLoopGroup 中的 NioEventLoop 是否是2的幂来创建不同的线程选择器,不管是哪一种选择器,最终效果都是从第一个 NioEvenLoop 遍历到最后一个NioEventLoop,再从第一个开始,如此循环。GenericEventExecutorChooser 通过简单的累加取模来实现循环的逻辑,而 PowerOfTowEventExecutorChooser 是通过位运算实现的。
private static final class PowerOfTwoEventExecutorChooser implements EventExecutorChooser {
......
@Override
public EventExecutor next() {
return executors[idx.getAndIncrement() & executors.length - 1];
}
......
}
private static final class GenericEventExecutorChooser implements EventExecutorChooser {
......
@Override
public EventExecutor next() {
return executors[(int) Math.abs(idx.getAndIncrement() % executors.length)];
}
......
}
最后总结一下,NioEventLoopGroup 的创建核心就三步
创建ThreadPerTaskExecutor;
创建NioEventLoop;
创建线程选择器。
完整代码见:hello-netty
本文所有图例见:processon: Netty学习笔记
更多内容见:Netty专栏
参考资料
Netty 学习(六):创建 NioEventLoopGroup 的核心源码说明的更多相关文章
- Java内存管理-掌握类加载器的核心源码和设计模式(六)
勿在流沙筑高台,出来混迟早要还的. 做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 上一篇文章介绍了类加载器分类以及类加载器的双亲委派模型,让我们能够从整体上对类加载器有 ...
- javaweb期末项目-stage2-项目创建、配置、接口设计和功能实现(含核心源码)
项目的创建.配置.接口设计和功能实现(含核心代码).rar--下载 说明:解压密码为袁老师的全名拼音(全小写) 相关链接: 项目结构:https://www.cnblogs.com/formyfish ...
- Android版数据结构与算法(五):LinkedHashMap核心源码彻底分析
版权声明:本文出自汪磊的博客,未经作者允许禁止转载. 上一篇基于哈希表实现HashMap核心源码彻底分析 分析了HashMap的源码,主要分析了扩容机制,如果感兴趣的可以去看看,扩容机制那几行最难懂的 ...
- iOS 开源库系列 Aspects核心源码分析---面向切面编程之疯狂的 Aspects
Aspects的源码学习,我学到的有几下几点 Objective-C Runtime 理解OC的消息分发机制 KVO中的指针交换技术 Block 在内存中的数据结构 const 的修饰区别 block ...
- HashMap的结构以及核心源码分析
摘要 对于Java开发人员来说,能够熟练地掌握java的集合类是必须的,本节想要跟大家共同学习一下JDK1.8中HashMap的底层实现与源码分析.HashMap是开发中使用频率最高的用于映射(键值对 ...
- 手撕spring核心源码,彻底搞懂spring流程
引子 十几年前,刚工作不久的程序员还能过着很轻松的日子.记得那时候公司里有些开发和测试的女孩子,经常有问题解决不了的,不管什么领域的问题找到我,我都能帮她们解决.但是那时候我没有主动学习技术的意识,只 ...
- 并发编程之 SynchronousQueue 核心源码分析
前言 SynchronousQueue 是一个普通用户不怎么常用的队列,通常在创建无界线程池(Executors.newCachedThreadPool())的时候使用,也就是那个非常危险的线程池 ^ ...
- 6 手写Java LinkedHashMap 核心源码
概述 LinkedHashMap是Java中常用的数据结构之一,安卓中的LruCache缓存,底层使用的就是LinkedHashMap,LRU(Least Recently Used)算法,即最近最少 ...
- 3 手写Java HashMap核心源码
手写Java HashMap核心源码 上一章手写LinkedList核心源码,本章我们来手写Java HashMap的核心源码. 我们来先了解一下HashMap的原理.HashMap 字面意思 has ...
随机推荐
- OpenCV视频防抖技术解析
视频防抖有很多种技术,各有优劣,主流的目前分为三种:EIS电子防抖EIS电子防抖是通过软件算法实现防抖的.其技术运作原理是通过加速度传感器和陀螺仪模块侦测手机抖动的幅度,从而来动态调节整ISO.快门以 ...
- 浅谈Meet in the middle——MITM
目测观看人数 \(0+0+0=0\) \(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇. 可以理解为就是起点跑搜索树基本一 ...
- 【PMP学习笔记】第4章 项目整合管理
[PMP学习笔记]第4章 项目整合管理 一.项目整合管理 什么是项目整合管理? 项目整合管理由项目经理负责.虽然其他知识领域可以由相关专家(如成本分析专家.进度规划专家.风险管理专家)管理,但是项目整 ...
- ansible一键安装GreatSQL并构建MGR集群
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 利用ansible一键安装GreatSQL并完成MGR部署. 本次介绍如何利用ansible一键安装GreatSQL并完成 ...
- FreeSql 将 Saas 租户方案精简到极致[.NET ORM SAAS]
什么是多租户 维基百科:"软件多租户是指一种软件架构,在这种软件架构中,软件的一个实例运行在服务器上并且为多个租户服务".一个租户是一组共享该软件实例特定权限的用户.有了多租户架构 ...
- Docker容器网络配置
Docker容器网络配置 1.Linux内核实现名称空间的创建 1.1 ip netns命令 可以借助ip netns命令来完成对 Network Namespace 的各种操作.ip netns命令 ...
- Java多线程开发系列之五:Springboot 中异步请求方法的使用
Springboot 中异步线程的使用在过往的后台开发中,我们往往使用java自带的线程或线程池,来进行异步的调用.这对于效果来说没什么,甚至可以让开发人员对底层的状况更清晰,但是对于代码的易读性和可 ...
- systemd之导致内核 crash
本文主要讲解linux kernel panic系列其中一种情况: Attempted to kill init! exitcode=0x0000000b 背景:linux kernel 的panic ...
- python与pycharm的安装与“试用”
python与pycharm的安装与"试用" 一.python解释器安装与启动 python解释器的安装 1.打开文件安装包运行页面 #python3.8 2.选择Customiz ...
- Python小游戏——外星人入侵(保姆级教程)第一章 01创建Pygame窗口 02创建设置类Setting()
系列文章目录 第一章:武装飞船 01:创建Pygame窗口以及响应用户输入 02:创建设置类Setting() 一.前期准备 1.语言版本 Python3.9.0 2.编译器 Pycharm2022 ...