1. 统计数组中元素总结

1.1 统计元素出现的次数

为了统计元素出现的次数,我们肯定需要一个map来记录每个数组以及对应数字出现的频次。这里map的选择比较有讲究:

  1. 如果数据的范围有限制,如:只有小写字母、1000以内的正数等,这时我们可以通过一个数组来充当map
  2. 如果数据的范围没有限制,或者数据范围很大:如:int的数据范围,这时我们可以通过HashMap存储对应的keyvalue

可参考代码:

for(int i = 0; i< nums.length; i++){
count[nums[i]]++;
}

1.2 统计元素在数组中出现的最左和最右位置

首先想清楚一个问题:

  1. 从左到右遍历,最后遍历到的就是最右元素;
  2. 从右到左遍历,最后遍历到的就是最左元素;

我们就可以依据此,创建leftright变量,从左往右遍历时更新right,从右往左遍历时更新left

for(int i = 0; i < nums.length; i++){
if(nums[i] == target){
right = i;
}
} for(int i = nums.length - 1; i >= 0; i--){
if(nums[i] == target){
left = i;
}
}

1.3 统计元素有没有出现(有没有重复出现)

思路仍然是:统计元素出现的次数,最后根据count数组来判断元素是否出现或者元素是否重复出现。

有时,题目要求我们空间复杂度为O(1),这时我们要仔细地审题。挖掘统计数组与原数组之间的关系,一般情况下我们只能通过修改原数组来统计每个元素出现的次数。比如说:如果数组中元素都在[1, n]之间,而且原数组的长度也为:n,此时我们就可以通过修改原数组来记录元素出现的次数。

在这种类型的题目中,一个有用的观念是:

  1. 对于nums中的一个数据x,我们用nums[x - 1] 来标识这个元素是否已经出现过;
  2. 为了标识nums[x - 1]是否出现过,我们不能使用nums中原来就会出现的数字,比如说:范围[1, n]之间的数字;一个常用的方法是:将nums[x - 1]转化为负数,这样就可以用来标识 x 之前是否已经出现过;
for(int i = 0; i < nums.length; i++){
// 防止 x 为负数
int x = Math.abs(nums[i)); if(nums[x - 1] < 0){
// 出现过,做操作
}else{
// 通过负数来标识元素x已经出现过了
nums[x - 1] = - nums[x - 1];
}
}

2. 题目记录

645. 错误的集合

分析题意

一个长度为n的集合s中本来存储的是1-n的数据,将数据打乱后并挑选一个数据替换成1-n之间的其他数据。请你找出:被替换的数据和替换成的数据。

这道题的关键在于:数据其实是无序的,所以我们不能依靠相邻元素的大小关系来进行判断。

思路分析

如果我们能够统计数组中每个元素的出现次数,那么查到被替换的数据(频次为0),替换成的数据(频次为2)就十分的简单。

int[] count = new int[nums.length];
for(int i = 0; i < nums.length; i++){
count[nums[i] - 1] ++;
} for(int i = 0; i < count.length; i++){ if(count[i] == 0){
// 被替换的元素
} if(count[i] == 2){
// 替换的元素
}
}

我们可以发现,count的大小为n,而nums的大小也为n。那么我们能不能用nums数组来标识一个元素是否出现过呢?答案是可以的。

class Solution {
public int[] findErrorNums(int[] nums) {
int[] ans = new int[2];
for(int i = 0; i < nums.length; i++){
int k = Math.abs(nums[i]);
if(nums[k - 1] < 0){
// 前面已经出现过
ans[0] = k;
}else{
nums[k - 1] = - nums[k - 1];
}
}
// 经过上述过程
// 如果x出现,那么nums[x - 1] 为负数
// 如果x没有出现,那么nums[x - 1]保持原样不变
for(int i = 0; i < nums.length; i++){
if(nums[i] > 0){
ans[1] = i + 1;
break;
}
} return ans;
}
}

复杂度分析

时间复杂度:O(n)

空间复杂度:O(1)

697. 数组的度

分析题意

要想知道元素 从出现的最大频次,那么我们需要统计每个元素出现的次数。

要计算长度就需要知道最大出现元素的起始位置和终止位置,即元素的最左位置和最右位置。

所以,这道题就转化为了:求每个元素频次以及最左和最右位置。

思路分析

由于数据的范围较大,所以我们通过map来进行存储。

class Solution {
public int findShortestSubArray(int[] nums) {
HashMap<Integer, Integer> count = new HashMap<>();
HashMap<Integer, Integer> left = new HashMap<>();
HashMap<Integer, Integer> right = new HashMap<>(); // 统计频次和最右元素
for(int i = 0; i < nums.length; i++){
count.put(nums[i], count.getOrDefault(nums[i], 0) + 1);
right.put(nums[i], i);
}
// 统计最左元素
for(int i = nums.length - 1; i >= 0; i--){
left.put(nums[i], i);
} int maxFreq = 0;
int minLen = 0;
for(Map.Entry<Integer, Integer> entry: count.entrySet()){
if(entry.getValue() > maxFreq){
maxFreq = entry.getValue();
minLen = right.get(entry.getKey()) - left.get(entry.getKey()) + 1;
}else if(entry.getValue() == maxFreq){
minLen = Math.min(minLen, right.get(entry.getKey()) - left.get(entry.getKey()) + 1);
}
} return minLen; }
}

复杂度分析

时间复杂度:O(n)

空间复杂度:O(n)

448. 找到所有数组中消失的数字

分析题意

一个长度为n的数组内,所有数字都在1-n范围内。请找出在1-n范围内但是没有出现在数组中的元素。

思路分析

如果我们知道1-n范围内每个数字出现的频次,那么出现频次为0的所有元素都是我们想要找的元素。进一步来说,其实我们只关注这个元素是否出现过,即:>0=0的差别,不关心具体出现了几次。

题目要求我们使用常数空间复杂度来解决这道题目。那我们只能通过修改原数组来实现统计是否元素是否出现这个需求。和上面一样,我们使用 nums[x - 1]是否为负数来标识元素x是否已经出现过。

class Solution {
public List<Integer> findDisappearedNumbers(int[] nums) {
for(int i = 0; i < nums.length; i++){
int k = Math.abs(nums[i]);
// 确保将 k-1 置为负数
nums[k - 1] = - Math.abs(nums[k - 1]);
} List<Integer> ans = new ArrayList<>();
for(int i = 0; i < nums.length; i++){
if(nums[i] > 0){
ans.add(i + 1);
}
} return ans; }
}

复杂度分析

时间复杂度:O(n)

空间复杂度:O(1), 返回元素不计算

442. 数组中重复的数据

分析题意

长度为n的数组中,每个元素都在1-n范围内,且每个元素要么出现1次,要么出现2次,(其实隐含着:1-n内的有些元素并不在数组中,因为存在重复元素)找出所有出现2次的元素。

要求:时间复杂为O(n),空间复杂度为O(1)

思路分析

如果我们能用一个集合存储已经出现过的元素,然后每次遍历一个新元素时先判断该元素是否在已有的集合中:

  1. 如果已经存在那么它就是我们要找的重复元素,将该元素加入到结果集中;
  2. 如果不存在那么就把它加入到集合中;
for(int i = 0; i < nums.length; i++){
// 如果set中没有该元素,添加成功返回true
// 如果set中存在该元素,添加失败返回false
if(!set.add(nums[i]){
ans.add(nums[i]);
} }

上述方法的时间复杂度为O(n),但是空间复杂度也是O(n),不符合要求。那么 我们是否有办法降低时间复杂度呢?

由于数组的长度是n,数组中每一个数字都在1-n范围内,所以我们可以用nums[x - 1] 来标识元素 x 的状态:是否已经出现过,这样我们就可以实现O(1)空间复杂度了。

class Solution {
public List<Integer> findDuplicates(int[] nums) {
List<Integer> ans = new ArrayList<>();
for(int i = 0; i < nums.length; i++){
int k = Math.abs(nums[i]);
if(nums[k - 1] < 0){
// 已经出现过,这一次是第二次出现
ans.add(k);
}else{
nums[k - 1] = - nums[k - 1];
} } return ans;
}
}

复杂度分析

时间复杂度:O(n)

空间复杂度:O(1)

41. 缺失的第一个正数

分析题意

给你一个未排序的整数数组 nums ,请你找出其中没有出现的最小的正整数

请你实现时间复杂度为O(n)并且只使用常数级别额外空间的解决方案。

对于一个长度为n的数组,其中没有出现的最小正整数的范围一定在:1~(n+1)范围内。所以我们关注的数据只有1~(n+1)中每个数的出现频次。

思路分析

题意中我们已经明白了:统计1~(n+1)中每个元素的出现频次,其实我们只统计1~n就可以了。如果1~n都出现了,那么最小的正整数就是n+1

统计1~n每个元素出现频次,那么我们需要一个长度为n的数组,这样的话空间复杂度就是O(n),不符合题意。那我们就只能从修改原数组下手了。

还记得之前的题目,我们都是通过nums[x - 1]来标识元素x是否出现过,这道题依旧适用,但是要做一点点修改。因为我们需要用负数标识元素已经出现过,但是原数组中的数据的范围是 \([-2^{(31)}, 2^{31}-1]\)存在负数,所以我们需要先将超出1~n范围内的数组全部置为n+1

class Solution {
public int firstMissingPositive(int[] nums) {
for(int i = 0; i < nums.length; i++){
if(nums[i] > nums.length || nums[i] <= 0){
nums[i] = nums.length + 1;
}
} for(int i = 0; i < nums.length; i++){
int k = Math.abs(nums[i]);
if( k <= nums.length){
nums[k - 1] = - Math.abs(nums[k - 1]);
}
} int ans = nums.length + 1;
for(int i = 0; i < nums.length; i++){
if(nums[i] >= 0){
ans = i+1;
break;
}
} return ans;
}
}

复杂度分析

时间复杂度:O(n)

空间复杂度:O(1)

LeetCode - 统计数组中的元素的更多相关文章

  1. 统计数组中各个元素出现的次数,元素取值范围为:1到N

     问题描述: * 给定一个整数数组a,长度为N,元素取值范围为[1,N]. * 统计各个元素出现的次数,要求时间复杂度为O(N),空间复杂度为O(1). * 可以改变原来数组结构.  思路: * 从第 ...

  2. [LeetCode]1464. 数组中两元素的最大乘积

    给你一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使 (nums[i]-1)*(nums[j]-1) 取得最大值. 请你计算并返回该式的最大值. 示例 1: 输入:nums = [3 ...

  3. 统计js数组中奇数元素的个数

    如何统计一个JS数组中奇数元素的个数呢? 这是群友提出的一个问题,大部分群友给出的是遍历 然后对2取模,得到最终结果. 这样的写法是最容易想得到的,那么有没有其他思路呢? 这里我提供另外一种思路,我们 ...

  4. LeetCode 27 Remove Element (移除数组中指定元素)

    题目链接: https://leetcode.com/problems/remove-element/?tab=Description   Problem : 移除数组中给定target的元素,返回剩 ...

  5. LeetCode:数组中的第K个最大元素【215】

    LeetCode:数组中的第K个最大元素[215] 题目描述 在未排序的数组中找到第 k 个最大的元素.请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素. 示例 1: ...

  6. Leetcode算法【34在排序数组中查找元素】

    在之前ARTS打卡中,我每次都把算法.英文文档.技巧都写在一个文章里,这样对我的帮助是挺大的,但是可能给读者来说,一下子有这么多的输入,还是需要长时间的消化. 那我现在改变下方式,将每一个模块细分化, ...

  7. Java实现 LeetCode 34 在排序数组中查找元素的第一个和最后一个位置

    在排序数组中查找元素的第一个和最后一个位置 给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n ...

  8. 【LeetCode每天一题】Find First and Last Position of Element in Sorted Array(找到排序数组中指定元素的开始和结束下标)

    Given an array of integers nums sorted in ascending order, find the starting and ending position of ...

  9. Leetcode题目34.在排序数组中查找元素的第一个和最后一个位置(中等)

    题目描述: 给定一个按照升序排列的整数数组 nums,和一个目标值 target.找出给定目标值在数组中的开始位置和结束位置. 你的算法时间复杂度必须是 O(log n) 级别. 如果数组中不存在目标 ...

随机推荐

  1. Solution -「线段树」题目集合

    T1 无聊的数列 来自:Link flag 帖先从水题入手. 首先分析题目,它是以等差数列为原型进行的修改.等差数列一大性质就是其差分数列的值除第一项以外均相等. 于是不难想到使用差分数列进行维护. ...

  2. MoCo V1:视觉领域也能自监督啦

    何凯明从 CVPR 2020 上发表的 MoCo V1(Momentum Contrast for Unsupervised Visual Representation Learning),到前几天挂 ...

  3. 使用 Azure 静态 Web 应用服务免费部署 Hexo 博客

    一.前言 最近在折腾 Hexo 博客,试了一下 Azure 的静态 Web 应用服务,发现特别适合静态文档类型的网站,而且具有免费额度,支持绑定域名.本文只是以 Hexo 作为示例,其他类型的框架也是 ...

  4. 详解 Apache Hudi Schema Evolution(模式演进)

    Schema Evolution(模式演进)允许用户轻松更改 Hudi 表的当前模式,以适应随时间变化的数据. 从 0.11.0 版本开始,支持 Spark SQL(spark3.1.x 和 spar ...

  5. 2022-7-15 pan小堂 数组排序算法

    二分查找(理解) public ych class{ public static void main(String[] args){ ///运用二分查找需要 数组在的值是递升的 int[] arr1 ...

  6. flex这些问题应该被理解

    flex三连问,帮助我们更好的理解布局利器 问题: flex的值 auto, none, 0, 1, initial分别是什么?有什么作用?有什么表现? flex-basis和width的区别?单值f ...

  7. 兔起鹘落全端涵盖,Go lang1.18入门精炼教程,由白丁入鸿儒,全平台(Sublime 4)Go lang开发环境搭建EP00

    Go lang,为并发而生的静态语言,源于C语言又不拘泥于性能,高效却不流于古板,Python灵活,略输性能,Java严谨,稍逊风骚.君不见各大厂牌均纷纷使用Go lang对自己的高并发业务进行重构, ...

  8. Min GW 安装教程(转载)

    下载方式一:1.百度搜索关键词"mingw",点击第一个:2.进入官网后,点击右上角的"Downloads":3.进入第三个页面后,点击"mingw- ...

  9. 通过route , tracert , traceroute 查看本地路由配置及访问ip或域名时经过的路由信息

    转载请注明出处: 1.路由器和交换机的区别和过程 在windows 系统或linux 系统访问 外网ip 或域名时,都会通过层层的路由器,然后将请求转发到最终的目标服务器:因为互联网通过路由器实现公网 ...

  10. WebStorm 配置 Vue3 的文件模板

    WebStorm 默认的 Vue 模板不是 setup 函数(组合式 API)模板,而是 Options API 模板.在设置中搜索 File and Code Templates 编辑创建 vue ...