题目链接

首先,这道题看上去就是个博弈论,很显然的 \(Nim\) 游戏。

因为每一个的取法都和它的上一位有关。

有一种非常显然的转换方式 :我们把这若干堆石子从前向后做一个差分

我们记 \(a_i-a_{i-1}=b_i\)

题目转化成:

对于若干堆石子,第 \(i\) 堆石子的个数是 \(b_i\) ,问先手是否必胜?

好像有点问题:

因为所有的石子都是动态变化的。

很显然当一个石子堆变化时,它和它后面一个石子堆的差分结果一定会变化。

所以最传统的 \(Nim\) 游戏显然是不可行的。

考虑阶梯 \(Nim\) 游戏。

我们可以把每一个差分的结果都映射到一个阶梯上。

很容易发现:我们对于每一堆石子的任意一个操作都可以通过在阶梯上移动实现。

(本人较懒,图片就咕咕咕了)

当我们发现所有的石子都移到最上层的台阶时。

可以看出所有的差都变成了 \(0\) ,也就是说所有的都一样。

显然此时会分出胜负。

Code

#include <bits/stdc++.h>

const int N = 100005;

int T, n, a[N];

signed main(void) {
std::ios::sync_with_stdio(false);
std::cin.tie(0); std::cout.tie(0);
std::cin >> T;
for (int test = 1; test <= T; test ++) {
std::cin >> n;
int ans = 0;
for (int i = 1; i <= n; i++) {
std::cin >> a[i];
int num = a[i] - a[i - 1];
if ((n - i) % 2 == 0) ans ^= num;
}
if (ans == 0)
std::cout << "NIE" << std::endl;
else
std::cout << "TAK" << std::endl;
}
}

P3480 [POI2009]KAM-Pebbles 题解的更多相关文章

  1. P3480 [POI2009]KAM-Pebbles

    P3480 [POI2009]KAM-Pebbles比如第一个样例 原:0 2 2差: 2 0 0如果把中间的2拿掉一个,就会变成原:0 1 2差: 1 1 0就可以把差看成阶梯nim细节:最终要移到 ...

  2. P3480 [POI2009]KAM-Pebbles 阶梯NIM

    $ \color{#0066ff}{ 题目描述 }$ 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时 ...

  3. 洛谷 P3480 [POI2009]KAM-Pebbles

    https://www.luogu.org/problemnew/solution/P3480 讲不清楚... 首先对原序列做差分:设原序列为a,差分序列为d 那么,每一次按题意在原序列位置i处取走石 ...

  4. 【BZOJ1115】[POI2009]石子游戏Kam 阶梯博弈

    [BZOJ1115][POI2009]石子游戏Kam Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要 ...

  5. BZOJ 1115: [POI2009]石子游戏Kam

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 883  Solved: 545[Submit][Stat ...

  6. 【BZOJ】【1115】【POI2009】石子游戏KAM

    博弈论 这个题……一看就觉得很捉急啊= =肿么办? 灵光一现:差分一下~ 那么我们看一下差分以后,从第 i 堆中拿走 k 个石子变成了:a[i]-=k; a[i+1]+=k; 嗯这就转化成了阶梯博弈! ...

  7. bzoj 1115: [POI2009]石子游戏Kam -- 博弈论

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...

  8. BZOJ 1115 [POI2009]石子游戏Kam(阶梯博弈)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1115 [题目大意] 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数. ...

  9. BZOJ1115 [POI2009]石子游戏Kam 【博弈论——阶梯游戏】

    题目 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. ...

随机推荐

  1. python基础练习题(题目 打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身)

    day8 --------------------------------------------------------------- 实例013:所有水仙花数 题目 打印出所有的"水仙花 ...

  2. Day 005:PAT练习--1047. 编程团体赛(20)

    编程团体赛的规则为:每个参赛队由若干队员组成:所有队员独立比赛:参赛队的成绩为所有队员的成绩和:成绩最高的队获胜.现给定所有队员的比赛成绩,请你编写程序找出冠军队. 输入格式: 输入第一行给出一个正整 ...

  3. 【FAQ】接入HMS Core地图服务过程中常见问题总结

    HMS Core地图服务(Map Kit)给开发者提供一套地图开发调用的SDK,助力全球开发者实现个性化地图呈现与交互,方便轻松地在应用中集成地图相关的功能,全方位提升用户体验. 在日常工作中,我们会 ...

  4. Visual Studio之安装(更新,扩展)速度缓慢解决方案

    一.背景 小伙伴们在安装visual studio,或者更新,扩展vs功能时,在家里网速正常的情况下,可能出现进度十分缓慢的问题,如何解决呢? 二.解决思路 修改hosts文件 1.地址:默认安装在 ...

  5. Linux操作系统,为什么需要内核空间和用户空间?

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 本文以 32 位系统为例介绍内核空间(kernel sp ...

  6. 专门为小白准备的入门级mybatis-plus-generator代码自动生成器,提高开发效率。值得收藏

    引入依赖 <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-g ...

  7. SQL注入的几种类型

    SQL注入就是: 将构造SQL语句来插入到web提交的数据之中,让其返回数据时运行自己构造的恶意SQL语句. SQL注入构造恶意SQL语句的方法有: 构造堆叠,构造闭合,构造报错,构造时间差,等等 S ...

  8. Caused by: java.lang.Exception: No native library is found for os.name=Mac and os.arch=aarch64. path=/org/sqlite/native/Mac/aarch64

    编译项目报错: Caused by: java.lang.Exception: No native library is found for os.name=Mac and os.arch=aarch ...

  9. sklearn机器学习实战-简单线性回归

    记录下学习使用sklearn,将使用sklearn实现机器学习大部分内容 基于scikit-learn机器学习(第2版)这本书,和scikit-learn中文社区 简单线性回归 首先,最简单的线性回归 ...

  10. 在字节跳动,一个更好的企业级SparkSQL Server这么做

    SparkSQL是Spark生态系统中非常重要的组件.面向企业级服务时,SparkSQL存在易用性较差的问题,导致难满足日常的业务开发需求.本文将详细解读,如何通过构建SparkSQL服务器实现使用效 ...