几种常见排序算法之Java实现(插入排序、希尔排序、冒泡排序、快速排序、选择排序、归并排序)
排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
稳定度(稳定性)
一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
排序算法分类
常见的有插入(插入排序/希尔排序)、交换(冒泡排序/快速排序)、选择(选择排序)、合并(归并排序)等。
一.插入排序
插入排序(Insertion Sort),它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
- 从第一个元素开始,该元素可以认为已经被排序。
- 取出下一个元素,在已经排序的元素序列中从后向前扫描。
- 如果该元素(已排序)大于新元素,将该元素移到下一位置。
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置。
- 将新元素插入到该位置后。
- 重复步骤2~5。
public static void insertionSort(int[] data) {
for (int index = 1; index < data.length; index++) {
int key = data[index];
int position = index;
// shift larger values to the right
while (position > 0 && data[position - 1] > key) {
data[position] = data[position - 1];
position--;
}
data[position] = key;
}
}
二.希尔排序
希尔排序(Shell Sort)是插入排序的一种。是针对直接插入排序算法的改进。该方法又称缩小增量排序,因DL.Shell于1959年提出而得名。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
- 插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率。
- 但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位。
static <E extends Comparable<? super E>> void shellSort(List<E> a) {
int h = 1;
while (h < a.size()/3) h = h*3 + 1; // <O(n^(3/2)) by Knuth,1973>: 1, 4, 13, 40, 121, ...
for (; h >= 1; h /= 3)
for (int i = h; i < a.size(); i++)
for (int j = i; j >= h && a.get(j).compareTo(a.get(j-h)) < 0; j-=h)
Collections.swap(a, j, j-h);
}
三.冒泡排序
冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
冒泡排序算法的运作如下:
- 比较相邻的元素,如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,在这一点,最后的元素应该会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
public static void bubbleSort(int[] data) {
int temp = 0;
for (int i = data.length - 1; i > 0; --i) {
boolean isSort = false;
for (int j = 0; j < i; ++j) {
if (data[j + 1] < data[j]) {
temp = data[j];
data[j] = data[j + 1];
data[j + 1] = temp;
isSort = true;
}
} // 如果一次内循环中发生了交换,那么继续比较;如果一次内循环中没发生任何交换,则认为已经排序好了。
if (!isSort)
break;
}
}
四.快速排序
快速排序(Quicksort)是对冒泡排序的一种改进。由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
步骤为:
- 从数列中挑出一个元素,称为 "基准"(pivot)。
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
/*
* more efficient implements for quicksort. <br />
* use left, center and right median value (@see #median()) for the pivot, and
* the more efficient inner loop for the core of the algorithm.
*/
public class Quicksort { public static final int CUTOFF = 11; /**
* quick sort algorithm. <br />
*
* @param arr an array of Comparable items. <br />
*/
public static <T extends Comparable<? super T>> void quicksort(T[] arr) {
quickSort(arr, 0, arr.length - 1);
} /**
* get the median of the left, center and right. <br />
* order these and hide the pivot by put it the end of of the array. <br />
*
* @param arr an array of Comparable items. <br />
* @param left the most-left index of the subarray. <br />
* @param right the most-right index of the subarray.<br />
* @return T
*/
public static <T extends Comparable<? super T>> T median(T[] arr, int left, int right) { int center = (left + right) / 2; if (arr[left].compareTo(arr[center]) > 0)
swapRef(arr, left, center);
if (arr[left].compareTo(arr[right]) > 0)
swapRef(arr, left, right);
if (arr[center].compareTo(arr[right]) > 0)
swapRef(arr, center, right); swapRef(arr, center, right - 1);
return arr[right - 1];
} /**
* internal method to sort the array with quick sort algorithm. <br />
*
* @param arr an array of Comparable Items. <br />
* @param left the left-most index of the subarray. <br />
* @param right the right-most index of the subarray. <br />
*/
private static <T extends Comparable<? super T>> void quickSort(T[] arr, int left, int right) {
if (left + CUTOFF <= right) {
// find the pivot
T pivot = median(arr, left, right); // start partitioning
int i = left, j = right - 1;
for (;;) {
while (arr[++i].compareTo(pivot) < 0);
while (arr[--j].compareTo(pivot) > 0);
if (i < j)
swapRef(arr, i, j);
else
break;
} // swap the pivot reference back to the small collection.
swapRef(arr, i, right - 1); quickSort(arr, left, i - 1); // sort the small collection.
quickSort(arr, i + 1, right); // sort the large collection. } else {
// if the total number is less than CUTOFF we use insertion sort
// instead (cause it much more efficient).
insertionSort(arr, left, right);
}
} /**
* method to swap references in an array.<br />
*
* @param arr an array of Objects. <br />
* @param idx1 the index of the first element. <br />
* @param idx2 the index of the second element. <br />
*/
public static <T> void swapRef(T[] arr, int idx1, int idx2) {
T tmp = arr[idx1];
arr[idx1] = arr[idx2];
arr[idx2] = tmp;
} /**
* method to sort an subarray from start to end with insertion sort
* algorithm. <br />
*
* @param arr an array of Comparable items. <br />
* @param start the begining position. <br />
* @param end the end position. <br />
*/
public static <T extends Comparable<? super T>> void insertionSort(T[] arr, int start, int end) {
int i;
for (int j = start + 1; j <= end; j++) {
T tmp = arr[j];
for (i = j; i > start && tmp.compareTo(arr[i - 1]) < 0; i--) {
arr[i] = arr[i - 1];
}
arr[i] = tmp;
}
} private static void printArray(Integer[] c) {
for (int i = 0; i < c.length; i++)
System.out.print(c[i] + ","); System.out.println();
} public static void main(String[] args) {
Integer[] data = {10, 4, 9, 23, 1, 45, 27, 5, 2}; System.out.println("bubbleSort...");
printArray(data);
quicksort(data);
printArray(data);
}
}
五.选择排序
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
因为每一趟确定元素的过程中都会有一个选择最小值的子流程,所以人们形象地称之为选择排序。
举个例子,序列5 8 5 2 9,我们知道第一遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
public static void selectSort(int[] data) {
int minIndex = 0;
int temp = 0;
for (int i = 0; i < data.length; i++) {
minIndex = i; // 无序区的最小数据数组下标
for (int j = i + 1; j < data.length; j++) { // 在无序区中找到最小数据并保存其数组下标
if (data[j] < data[minIndex]) {
minIndex = j;
}
}
if (minIndex != i) { // 如果不是无序区的最小值位置不是默认的第一个数据,则交换之。
temp = data[i];
data[i] = data[minIndex];
data[minIndex] = temp;
}
}
}
六.归并排序
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
归并操作的过程如下:
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列。
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置。
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置。
- 重复步骤3直到某一指针达到序列尾。
- 将另一序列剩下的所有元素直接复制到合并序列尾。
public static int[] mergeSort(int[] arr) {// 归并排序 --递归
if (arr.length == 1) {
return arr;
}
int half = arr.length / 2;
int[] arr1 = new int[half];
int[] arr2 = new int[arr.length - half];
System.arraycopy(arr, 0, arr1, 0, arr1.length);
System.arraycopy(arr, half, arr2, 0, arr2.length);
arr1 = mergeSort(arr1);
arr2 = mergeSort(arr2);
return mergeSortSub(arr1, arr2);
} private static int[] mergeSortSub(int[] arr1, int[] arr2) {// 归并排序子程序
int[] result = new int[arr1.length + arr2.length];
int i = 0;
int j = 0;
int k = 0;
while (true) {
if (arr1[i] < arr2[j]) {
result[k] = arr1[i];
if (++i > arr1.length - 1) {
break;
}
} else {
result[k] = arr2[j];
if (++j > arr2.length - 1) {
break;
}
}
k++;
}
for (; i < arr1.length; i++) {
result[++k] = arr1[i];
}
for (; j < arr2.length; j++) {
result[++k] = arr2[j];
}
return result;
}
完整代码(除QuickSort)
package com.clzhang.sample.thinking; import java.util.*; /**
* 几路常见的排序算法Java实现
* @author acer
*
*/
public class CommonSort {
/**
* 插入排序具体算法描述如下:
* 1.从第一个元素开始,该元素可以认为已经被排序
* 2.取出下一个元素,在已经排序的元素序列中从后向前扫描
* 3.如果该元素(已排序)大于新元素,将该元素移到下一位置
* 4.重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
* 5.将新元素插入到该位置后
* 6.重复步骤2~5
*/
public static void insertionSort(int[] data) {
for (int index = 1; index < data.length; index++) {
int key = data[index];
int position = index;
// shift larger values to the right
while (position > 0 && data[position - 1] > key) {
data[position] = data[position - 1];
position--;
}
data[position] = key;
}
} /**
* 希尔排序,算法实现思想参考维基百科;适合大数量排序操作。
*/
static <E extends Comparable<? super E>> void shellSort(List<E> a) {
int h = 1;
while (h < a.size()/3) h = h*3 + 1; // <O(n^(3/2)) by Knuth,1973>: 1, 4, 13, 40, 121, ...
for (; h >= 1; h /= 3)
for (int i = h; i < a.size(); i++)
for (int j = i; j >= h && a.get(j).compareTo(a.get(j-h)) < 0; j-=h)
Collections.swap(a, j, j-h);
} /**
* 冒泡排序算法的运作如下:
* 1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。
* 2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
* 3.针对所有的元素重复以上的步骤,除了最后一个。
* 4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。[1]
*/
public static void bubbleSort(int[] data) {
int temp = 0;
for (int i = data.length - 1; i > 0; --i) {
boolean isSort = false;
for (int j = 0; j < i; ++j) {
if (data[j + 1] < data[j]) {
temp = data[j];
data[j] = data[j + 1];
data[j + 1] = temp;
isSort = true;
}
} // 如果一次内循环中发生了交换,那么继续比较;如果一次内循环中没发生任何交换,则认为已经排序好了。
if (!isSort)
break;
}
} /**
* 选择排序的基本思想是:
* 1.遍历数组的过程中,以 i 代表当前需要排序的序号,则需要在剩余的 [i+1…n-1] 中找出其中的最小值,
* 2.然后将找到的最小值与 i 指向的值进行交换。
* 因为每一趟确定元素的过程中都会有一个选择最小值的子流程,所以人们形象地称之为选择排序。
* @param data
*/
public static void selectSort(int[] data) {
int minIndex = 0;
int temp = 0;
for (int i = 0; i < data.length; i++) {
minIndex = i; // 无序区的最小数据数组下标
for (int j = i + 1; j < data.length; j++) { // 在无序区中找到最小数据并保存其数组下标
if (data[j] < data[minIndex]) {
minIndex = j;
}
}
if (minIndex != i) { // 如果不是无序区的最小值位置不是默认的第一个数据,则交换之。
temp = data[i];
data[i] = data[minIndex];
data[minIndex] = temp;
}
}
} /**
* 归并操作的过程如下:
* 1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
* 2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
* 3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
* 4.重复步骤3直到某一指针达到序列尾
* 5.将另一序列剩下的所有元素直接复制到合并序列尾
*/
public static int[] mergeSort(int[] arr) {// 归并排序 --递归
if (arr.length == 1) {
return arr;
}
int half = arr.length / 2;
int[] arr1 = new int[half];
int[] arr2 = new int[arr.length - half];
System.arraycopy(arr, 0, arr1, 0, arr1.length);
System.arraycopy(arr, half, arr2, 0, arr2.length);
arr1 = mergeSort(arr1);
arr2 = mergeSort(arr2);
return mergeSortSub(arr1, arr2);
} private static int[] mergeSortSub(int[] arr1, int[] arr2) {// 归并排序子程序
int[] result = new int[arr1.length + arr2.length];
int i = 0;
int j = 0;
int k = 0;
while (true) {
if (arr1[i] < arr2[j]) {
result[k] = arr1[i];
if (++i > arr1.length - 1) {
break;
}
} else {
result[k] = arr2[j];
if (++j > arr2.length - 1) {
break;
}
}
k++;
}
for (; i < arr1.length; i++) {
result[++k] = arr1[i];
}
for (; j < arr2.length; j++) {
result[++k] = arr2[j];
}
return result;
} private static void printArray(int[] c) {
for (int i = 0; i < c.length; i++)
System.out.print(c[i] + ","); System.out.println();
} public static void main(String []args){
int[] data = {10,4,9,23,1,45,27,5,2}; System.out.println("bubbleSort...");
int[] a = data.clone();
printArray(a);
bubbleSort(a);
printArray(a); System.out.println("selectSort...");
int[] b = data.clone();
printArray(b);
selectSort(b);
printArray(b); System.out.println("insertionSort...");
int[] c = data.clone();
printArray(c);
insertionSort(c);
printArray(c); System.out.println("shellSort...");
List<Integer> list = new ArrayList<Integer>();
for(int i=0;i<data.length;i++)
list.add(data[i]);
System.out.println(list);
shellSort(list);
System.out.println(list); System.out.println("mergeSort...");
int[] d = data.clone();
printArray(d);
printArray(mergeSort(d));
} }
本文相关引用:
几种常见排序算法之Java实现(插入排序、希尔排序、冒泡排序、快速排序、选择排序、归并排序)的更多相关文章
- Java排序算法分析与实现:快排、冒泡排序、选择排序、插入排序、归并排序(二)
一.概述: 上篇博客介绍了常见简单算法:冒泡排序.选择排序和插入排序.本文介绍高级排序算法:快速排序和归并排序.在开始介绍算法之前,首先介绍高级算法所需要的基础知识:划分.递归,并顺带介绍二分查找算法 ...
- 基础排序算法,java实现(快速,冒泡,选择,堆排序,插入)
1.冒泡排序: (1)比较相邻的元素.如果第一个比第二个大,就交换他们两个. (2)外面再套个循环就行. 算法复杂度:O(N2) 不罗嗦,上代码: //冒泡排序(两两交换,外加一个外循环) pub ...
- 数组排序代码,冒泡排序&快速排序&选择排序
冒泡排序: for(var i=0;i<arr.length-1;i++){ for(var j=0;j<arr.length-1-i;j++){ if(arr[j]>arr[j+1 ...
- Python 一网打尽<排序算法>之先从玩转冒泡排序开始
1. 前言 所谓排序,就是把一个数据群体按个体数据的特征按从大到小或从小到大的顺序存放. 排序在应用开发中很常见,如对商品按价格.人气.购买数量--显示. 初学编程者,刚开始接触的第一个稍微有点难理解 ...
- 常见的排序算法之Java代码解释
一 简要介绍 一般排序均值的是将一个已经无序的序列数据重新排列成有序的 常见的排序分为: 1 插入类排序 主要就是对于一个已经有序的序列中,插入一个新的记录.它包括:直接插入排序,折半插入排序和希尔排 ...
- 常见排序算法总结 -- java实现
常见排序算法总结 -- java实现 排序算法可以分为两大类: 非线性时间比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此称为非线性时间比较类排序. 线性时间 ...
- 常见排序算法(附java代码)
常见排序算法与java实现 一.选择排序(SelectSort) 基本原理:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录与第一个记录的位置进行交换:接着对不包括第一个记录以外的其他 ...
- 7种基本排序算法的Java实现
7种基本排序算法的Java实现 转自我的Github 以下为7种基本排序算法的Java实现,以及复杂度和稳定性的相关信息. 以下为代码片段,完整的代码见Sort.java 插入排序 /** * 直接插 ...
- 几种简单的排序算法(JAVA)
几种排序算法(JAVA) 一.代码 package com.hdwang; import java.util.Arrays; /** * Created by admin on 2017/1/20. ...
- 七种经典排序算法及Java实现
排序算法稳定性表示两个值相同的元素在排序前后是否有位置变化.如果前后位置变化,则排序算法是不稳定的,否则是稳定的.稳定性的定义符合常理,两个值相同的元素无需再次交换位置,交换位置是做了一次无用功. 下 ...
随机推荐
- Servlet学习笔记(七)—— 自己定义过滤器的编写改进:自己定义实现FilterChain
笔记六中实现了三种过滤器:字符编码过滤.登录权限过滤.敏感词过滤,可是有个缺陷就是,限定了过滤顺序,而不能实现先进行request过滤.最后response过滤,而且中间几项过滤的顺序不能动态改变.所 ...
- listView下拉刷新加载数据
这个下拉效果在网上最早的例子恐怕就是Johan Nilsson的实现,http://johannilsson.com/2011/03/13/android-pull-to-refresh-update ...
- android 如何连真机测试
1. 设置android手机为USB调试模式.步骤: menu---> 设置 ---> 应用程序 ---> 开发 , 选择[USB调试] 2. 用USB连接手机和电脑,并确保成功.步 ...
- iOS中重用UITableView单元格时,千万别忘了这个
不多说,看截图
- 4、Android Activity的生命周期 Activity的生命周期
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveXV4aWt1b18x/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...
- 笔试题之javaweb
Java web部分 1.Tomcat的优化经验 答:去掉对web.xml的监视,把jsp提前编辑成Servlet. 有富余物理内存的情况,加大tomcat使用的jvm的内存 2. ...
- maven build 失败
(1).之前项目打包都OK,不知道咋回事,突然出现如下图的问题: (2)上网查找了好多,一直没有解决,最后把本地maven库删除,重新运行了一遍,变成BUILD SUCCESS,但是警告还是The ...
- java 动态生成类再编译最后代理
package spring.vhostall.com.proxy; public interface Store { public void sell(); } ------------------ ...
- MVC第一次访问比较慢的解决方案
一.NGen优化 %WINDIR%\Microsoft.NET\Framework64\v4.0.30319\ngen install EntityFramework.Core.dll %WINDIR ...
- Flash:DisplayObject的矩阵旋转(移动/修改注册点,修改旋转点)
简单来说,原理就是利用matrix运算,先把旋转点移到原点位置,旋转变换后再恢复到原来的位置 var a:Sprite = new Sprite(); a.graphics.beginFill(0); ...