R语言:克里金插值
基于空间自相关,R语言克里金插值
library(gstat)
Warning message:
In scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
EOF within quoted string
library(sp)
data(meuse)
head(meuse)
x y cadmium copper lead zinc elev dist om ffreq soil lime landuse
1 181072 333611 11.7 85 299 1022 7.909 0.00135803 13.6 1 1 1 Ah
2 181025 333558 8.6 81 277 1141 6.983 0.01222430 14.0 1 1 1 Ah
3 181165 333537 6.5 68 199 640 7.800 0.10302900 13.0 1 1 1 Ah
4 181298 333484 2.6 81 116 257 7.655 0.19009400 8.0 1 2 0 Ga
5 181307 333330 2.8 48 117 269 7.480 0.27709000 8.7 1 2 0 Ah
6 181390 333260 3.0 61 137 281 7.791 0.36406700 7.8 1 2 0 Ga
dist.m
1 50
2 30
3 150
4 270
5 380
6 470
数据框转空间数据
coordinates(meuse) <- c("x","y")#定义坐标
class(meuse)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
spplot(meuse,"cadmium")
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAAAY1BMVEUAAAAAADMAADoAAGYAOpAAZrYWAP86AAA6ADo6AGY6Ojo6ZrY6kNtmAABmADpmtv+QOgCQZgCQ2/+2ZgC2Zjq2/7a2///EJtnbkDrb////mmX/tmb/25D//2D//7b//9v///+bR6U8AAAACXBIWXMAAA7DAAAOwwHHb6hkAAAcBUlEQVR4nO2d63rkuHVFl2JPO05mMhN3bMmtkYfv/5RR8VIEeAFJEDwbtM760VMCQXDJ2h+MAk+xaBznpqAWcJxcUAs4Ti6oBRwnF9QCjpMLagHHyQW1gOPkglrAcXJBLeA4uaAWcJxcUAs4Ti6oBRwnF9QCjpMLagHHyQW1gOPkglrAcXJBLeA4uaAWcJxcUAs4Ti6oBRwnF9QCjpMLagHHyQW1gOPkglrAHv5NUf/vag9qAXtQC1wDagF7UAvYg1rgGlAL2INawB7UAteAWsAe1AL2oBa4BtQC9qAWsAe1wDWgFrAHtYA9qAWuAbWAPagF7EEtcA2oBexBLWAPaoE8fvxIH8fEoipQC9iDWiCHHy2pHhiZVARqAXtQC+Tg4V0AtYA9qAUyeH3dTC9WLvWAWsAe1AKHeW3x8E5BLWAPaoHDPMP7+frbt5VOGApVAmoBe1ALHOX1dUjvZ3QfLPbCVqoGUAvYg1rgKEN4m8bDG4FawB7UAoeZZHc5vdg61QBqAXtQCxxmMbwvL3En7L3UoBawB7VABm10m2DZ8NISdsHeSg1qAXtQC5zAwxuCWsAe1AKnGNYMs/Si8VGCWsAe1AIF8PA+QC1gD2qBEviyofFf+a54eBv/le+Lb5X5r3wPxqROM/sEG5OaQC1gD2qBw4xrhPlq4QmWRnWAWsAe1AJ7eVZAeniXQS1gD2qBfYzV5+O+WLRDNgkx5oZyUAvYg1pgHxvh9X1e/5Wr5cePaXrXXvVg76gGtYA9qAV2sRHe+S02FJZaUAvYg1pgH9EnLmdbZR7exn/lenmGd3l3YVwG9w2YmVUDagF7UAvs4vW16aO7vDn2EtA2YKpXBagF7EEtsIPnZyfmM+yTcfuh/RFbwxpALWAPaoEdPMP7EjPpFjZjLikHtYA9qAW2GT8v/DIl6ufh/WqgFtgm+LB7Mry+bPhqoBbYwXTNG6c33Djz8H4pUAvsYAxvG9UovPEM7FtlXwrUArsYottMJt/VzTMM5SoBtYA9qAWO8rIw8c7Ti8BMDGoBe1AL7GTIZzjnNks3hjuwtasB1AL2oBbYYvJUkTita9mt/9cqD2oBe1ALpOkfihNENEqrh3cEtYA9qAXSdOENM7pr4q3917oC1AL2oBZI8m0e3vnGroe3BbWAPagFknyL0js/vtZe+a91CagF7EEtkGa+5m1W7qnFYCFXF6gF7EEtkCZ4iunQtBbkCC43qw7UAvagFthi9tj+1dk2hItsKga1gD2oBY6y/iYtBBOXqkAtYA9qgQSL35Xi4V0BtYA9qAVWWfuqH182LINawB7UAqscDq9/9P2rgVpgjcS3rAV3h8PGMNNc6lYlqAXsQS2wRuorAjume2Ye3q8GaoFVtrKbLNHhWrcaQS1gD2qBVfZNvCs1OlxtVx+oBexBLZDg2+yz7fFPC1PvcJDL5aoDtYA9qAXWmWwrzHYZfM0bgVrAHtQCy4yPGHk2bYTXt8rUAvagFlii/aj74rJgunJYG4Er9eoEtYA9qAWW2BnexH02rtSrE9QC9qAWWKB/vNPGsiF5m5hLBasEtYA9qAUW8PDmgFrAHtQCS4xPhYyah09g9j+k0sulflWCWsAe1AJLhA8nm/BM7EsyvVwnVyuoBexBLbDMYnQfQR0D6+GNQS1gD2qB3byENBtTL7ZuNYBawB7UAikW7kkEgfXwRqAWsAe1wIzu69YWPu8+ya5/cXYMagF7UAtM6L5wbeFJIx7eDVAL2INaYMIY3umqYBrdrm1lGK61rBHUAvagFoiZTbzp8K7CdYq1glrAHtQCMUF45w8oO5BerhKsF9QC9qAWmLC65n3g4U2AWsAe1AIT1te8D3zZsA5qAXtQC8wYtso8vMdALWAPaoF1FpO6K7pV/1pXgVrAHtQCIXFFw+5pdgEK2NwM1AL2oBYYmdeSpaObOkoRo1uBWsAe1AIjiULIBdLzMkWMbgVqAXtQCzwJvtx9Dx7eCagF7EEt8OT19Uh8N7Z8Ked1F1AL2INaYMTDewrUAvagFhjJmXrXjlLM6jagFrAHtUBLd2MiueydBtXDOwG1gD2oBZrhlvDj1Wp2l6LqW2URqAXsQS3Q7Anv/lrIHgqp3QjUAvagFhiy+1w5dI3hk3kPVfJ2UNDvJqAWsAe1wCS8HfGDpT28e0AtYA9qgSZcNgxE4c3IbhW/ljGoBexBLdAshDf+MpUwvHsDTGnH+kEtYA9qgZZ43p1+E1AQ3b3zL4UFbwBqAXtQCyyytOZtPLxJUAvYg/Da67fSpt8EtP2InAmcdbsfqAXsQXbl9J3g9S9u9fAug1rAHmRXXgrvJJjHbgmHcMbsnqAWsAfVhRfqGCbZPPH5S/9Lfgkwv+LHR/uf/sn9j/DGe2LPjh7eQ6AWsAfj6320PF4NXzrxfHM2WdIurHA9vAlQC9iD8fXOhNffsKVALWAPVhfq7kN8fIzpHbI4Se/zjJWJ18O7DGoBe7C5zHAH+FR4fdmQArWAPdhc5lm+MGZ3yGJcxhCd5VtlB0AtYA+Xjj7shI1Vjx8fr6/r4d3EC3NWQS1gDxeOPW7kjuGNN3e7LO6O7n4oPmL1oBawhwvHDoL6XDbs+HjwkbrdNTg/xN1ALWAP1w0d3kOLJ97U54P3r2tTcHaA+4FawB4uGLPPZhzU8BOWY3jndY8e3kxQC9hD8RHHdHY3gNeONnHlYx/aA3u5KTh5/g1BLWAPxUcMwzsP4lp4XyaclODk+TcEtYA9lB4wWhgsRTFcM4zpffb0ZUMmqAXsofSAYXgXZ9LxdfRRNV/zngS1gD0UH3Fh4g3SGP20sOZtfKssE9QC9lB8xHBVO0/vanjLhHaAckPdBdQC9lB0tC6J4R20SXinE/EFN9dauGbYmkEtYA8Fx1qqUliceEvOsctw9QXqA7WAPRQcK/WB9bFtObuF80zR0W4BagF7KDfU4nNuuldjp0l4+5fFp2MKjnUTUAvYQ7mhVsMbs1Ru7uE9D2oBeyg41uKzHVMnxHu7vttwCtQC9lBwrKPhfXbx8BYAtYA9FB1t/jzzVO8xs75sOA9qAXsoPeDy7Yi1vtGat2B8KTbSbUAtYA+lBgqrGfqmzTAGvQvHl0Lj3AjUAvZQZpjhnvDe8I533IImD+8ZUAvYQ5lh+vCG82cijEuHyk69lBnmTqAWsIciowx1kB5eHagF7KHIKM8i3ml2F8O4fMiXDedALWAPZYaZr3n3hdfXvMVALWAPZYYJPz3RN+1YNky6+FbZGVAL2EOpgWbPYjge3oJwxaB1g1rAHi4cey2XcXYvmXopNdB9QC1gD4JrroTXdxtOgVrAHuwvOWY2jquH9xSoBezB/pIr4S260UuRUW4FagF7KDPMxoMfY4KQzrbKPLy5oBawhxKD7HhuachKSH3ZcArUAvZQYpCD4V3ZVvDwngK1gD0UGGPyeLL1jlvR9K2yE6AWsIcCYwThTc2eC8euuUPR+F/ya0CJQaaP1lvuNTvWN+wvXt8PxUa6DagF7KHEIJOJdzmE82MvI03ZJa//Jb8ElBkm8TzegYWbwR7egqAWsIeywx1ZNrxE6S26zet/yS8BZYfLWPN6eMuAWsAeiowSPK/hwFaZLxtKglrAHgqMcegLWCNegu+g8PCeA7WAPRQYIyu8YTXZrOk0FBvpNqAWsIfzQ0yeDrmLotPsAlw3dK2gFrCH80N00T0WRQ9vcVAL2EOBMdroHghj9D7tGrhs5GpBLWAPBcY4Ft7JvYlr4LKRqwW1gD0UGeVIGC2y63/JLwFFRjmQRpOJ1/+SXwLODhB+dfCe/hbR9b/k14Bzpw+bZIfXvOcuuwkXj18hqAXs4dzp4de27zxlNbwlE025oe4CagF7OHV2zv0Jg0+w+V/ya8Cps1fDezyGHt6ToBawh3Onh9kNqxUOB7HwuzgKjXMjUAvYw7nTxxvDYfY8vAJQC9jD2QGGzAXZywqiLxtOglrAHs4O0IcuDOx2eBeOeXhPglrAHk6e/zIhaNw4Z6H5pEsA5Ya6C6gF7CH/1PjD7gfWvAa3Kbh09CpBLWAPuSdOv0IlTmR6zXB9erly8DpBLWAPuScuff/PWt/4iIf3ElAL2EPmedHzydJdZ1H1ZcMVoBawh8zzdj8Z0sNrBGoBe8g9cd/D9ZrlVYJXlZUHtYA95J54KryXg+nVqgC1gD1kndWWM+x4uF7QIes62WB7uRpALWAPGefElWTL4Q02IDy8JqAWsIeMcyZlkAvhnNxzs46u/yW/Bhw/ZVrEux1ee5BcVQpqAXs4fsq8An2+ZlCnF8VFtaAWsIeMczY/+rMeXqsoY3OZmkAtYA+Hz9jzubWV7NrNxFhcpC5QC9jDwf77PnK5I7zPA5ekmQvGrBzUAvZwsP+eWXf673gk2H+YvigLxUesHtQC9nCs++bEmwqjh/dKUAvYw7Huy+ENvnc4GcZJZF9Kf43KCKUHrB/UAvZwsP9CdsOvzU6H0cN7IagF7OFg/1PhHRfBvmwoDmoBezh8xnzNME/v5iAe3uKgFrCH0yPsDe/sDvJyexm4YMzKQS1gD+eHCLPbrIXR7v5EC2ZXqgbUAvZwfohJeJfx8F4NagF7KDHIZnTNP06B1YXqAbWAPeztuB3QFB7ey0EtYA/7uu1aGqTwZcPVoBawh33dPLzVg1rAHnb1irfD8liK7mVx5qJxKwa1gD3s6jWE9+hXu6e5cDbmklGrBrWAPezr1md353en7Eykh7ckqAXsYbNHu1g4Et4hk1u5vHIHgisGrRvUAvawcfy51u2iuye9LwFNIsMe3qKgFrCHjePjG7W937n2EoV3V4Vkebhk1KpBLWAP6cPhNkPGxJueXD28JUEtYA/pw110PxP2mdrHl1btX/PuSa9vlRUEtYA9bBxvo/ug/cK1XRPlgfBeBtYX1INawB42jmeEt5tQd6x5LwTzK8pBLWAPmz2GyfNIevsTG/PbwgOYX1EOagF72OyRHd7n+TleJ0FwTTGoBexhu8tidvdGcqGfRZq5/hK1gVrAHlIHu72FhfDuXQws9LNZR3D1BeoDtYA9rB8a93W7rbLoQ5NhAlOfdA/yvnTqVXD1BeoDtYA9rB9afwpvtAGWSOPY79nJaO+Mi8evENQC9rB6pMvu4mTr4a0Q1AL2sHrk27DKfemXDNHbtUl2k+ldfsTepXD1BeoDtYA9rB8Kwju8GnLn4a0P1AL2sH5oTGwU3iG+Q7d0GhfWFr5VdgmoBewhdTAI77dJeKedNi5jM9+OYHepWkAtYA+LrfE7s2/fFqbehd5JbG+0YXmxOkAtYA8LbdO1bb9jthreCkEtYA9qAXtYaIsXqOGG2V2y63/JLwHzptn8Osy/Ht6aQS1gD/OmxfAOt9tuEV3/S34NWGhbmnh3foCtFlAL2INawB4W2lYn3vukF7WAPagF7GGxNV4cjLtl8/BWuoxALWAPagF7iH5ajmI39WbfoFCAWsAe1AL2ELxei+L6/YlkeJWpRndpFagF7CF4vSe80/XEanq1kzKqC+tALWAP48tpFKfVux7eqkEtYA/jyziK4+vV7Ka/dU2aXkTXFYJawB6C11Hcgh88vHcAtYA9BK/nE+906p2fn3i75ssGU1AL2EP007TEfM+nJZIDFLI8DKoL60AtYA9rB9bWECnibr5VZgpqAXtYO3A+vEpQC9iDWsAe1g9FMdyTS/GbtBDUAvagFrCH7j8HPoS23tXDqwS1gD08/tnM3LjdkOxaTXa/7F/ya8Hjn43Qhdu8i13r+5QQagF7UAvYQ7P9f/ez7C7dJB5eHza4JO1cMGbloBawh2bxcz9hl/nEux7efXx8nDh5FxQfsXpQC9jD4584QdM8vYSJXcvugQB+tKxcrBAUH7F6UAvYw+OfdHgXbhs3s6OZ4T188k4oPWD9oBawh+4/0ZrhuUSIWsbjkyGystun18NbDNQC9jBreQl5tpUrwYnC68uGYqAWsId500J4i37gx9e8l4BawB7mTUtTb8mQReH1rbJSoBawh6XG+Z7YjrXpoZXDfsE8uPoC9YFawB7WDixNvJt34cq6nQC1gD2oBexh7cCRNe+O48agFrAHtYA9rB86UhJ51ZZXLqgF7EEtYA+7e+4qOzvts+diO6CIxa1ALWAPR09YKcEpmt3zg1HI5EagFrCHY92HWM3i5eFVg1rAHo51Xw1vyf3aAmsQSrncB9QC9nCo98uEa5w8vDmgFrCHQ71twuvLhhxQC9jDse6JZUNBPLwZoBawh2PdbcLrW2UZoBawh129oltts6YKQS1gD2oBe9jRZ/vWcCmbYqAWsAe1gD3s6JMOb133hXtQC9iDWsAetrvMthaWPsNW2uskqAXsQS1gD9tdJuGdJbnG9KIWsAe1gD3s6BOn08NbJ6gF7GFHn4WJ90ClrwTUAvagFrCHXb1SM62Htw5QC9jD4TPmYa0uuv6X/Bpw+IwqZ9opqAXsQS1gDxnnrES3pkSjFrAHtYA9lBqorgkZtYA9qAXsodRAHl4xqAXsodA4lW33ohawB7WAPRzpfJ/PvqMWsAe1gD3s7zpNZ80lDqgF7EEtYA/7uybvEnt41aAWsIfdPdP1OY1vlYlBLWAPu3vG4a1sjTsFtYA9qAXsYaFt9SZEqj6nLlAL2INawB5mLauhXFvz1phg1AL2oBawh1lLYkZdeoNW5wSMWsAe1AL2MG3Yvx4Y5l0PbxWgFrCHacPBxWyla1/UAvagFrCHWcuxMHp4awG1gD3MWhbCmMpmldn1v+SXgIW2WXSn8fz2LXW0BlAL2INawB62u0zj+a0lPF7c6jSoBexBLWAPmz1mq9ppeGsEtYA9qAXsYbPHNLzfvt0gvagF7EEtYA/bXRYnXg9vbaAWsIftLltr3hpBLWAPagF72NNputfg4a0Q1AL2kHNS7dH1v+TXALXANaAWsAe1gD2oBa4BtYA9qAXsQS1wDagF7EEtYA9qgWtALWAPagF7UAtcA2oBe1AL2INa4BpQC9iDWsAe1ALXgFrAHtQC9vBvivp/V3tQCzhOLqgFHCcX1AKOkwtqAcfJBbWA4+SCWsBxckEt4Di5oBZwnFxQCzhOLqgFHCcX1AKOkwtqgVvz+1/48z+bd/iPv/Utf/wG/DwcfxuPvPcVCL+2rZ//+ez5PMvJArXALVh7vNPvf/nM4vtnBt/7HP7x2+eLN37qDr/96R/PIy3/+uXzyNujP/2JzglQC9yA9QfrPcL7x2+Pifb7T8+GLrTNI6o/P+L809j/caBrePT38J4EtcANSIc3ymtHmMowvL//5ZlmD28BUAvUT+Jh0m14//MRwfcwvN+DH96ChHbtvmwoBWqB+tkIbxfBMIjv4zu29+DdW7eM6Bpn5zgZoBa4Aellwyy87wSr3M9Vwp//ORzo+jzm33YB4eE9CWqBG7Cx5p0sG4J5t/v5GdHvbYzHNbKH9ySoBW5Baqts8obtbZLd/njzXDWMM7WH9ySoBW7NbKvsM7u/RkeDOblP8djq4T0JaoFbM7tJ0a5lnzzWCV22Hwx9fM1bCtQCt6ZfMnS7B48N3LfuHvB//K3fze3uB3c/PFcW3/s7yB7ek6AWuDXP9ezCof/ePNvDexLUArcmEd73n9eOjF08vOdALXBruqqyRf5vK5heVXYa1AKOkwtqAcfJBbXAzfnjt1/TNefT1gfP/p/LDn7yBUQuqAVuwfp3Ab39tFlzHrW25wz93z8XzG2rv3XLArXADUh8C9u/fvl1s+Y8bO3O6ft39y+8yiEb1AI3IBHe573fRM152Prkcbgr6WmH8fDmgFqgflLfPPwMZ6LmPGptgv7vf/r7L36v7QSoBeonEd6gvHy95jxuDfq/MSwvPLxZoBa4AesT72PJ25GoOY9am6B/N1t7fVk2qAVuwHp4g9vD6zXnYevIZ//u4PhpDOcgqAVuwdpW2TjzJmrOw9aRz/7du73H2zYPbxaoBW5NG8mtmvOwNTrSRd+XDdmgFrg37W7DRs151NqE/d+GFx7eLFAL3JtuZk3WnEetUY16d9vYt8qyQS1wb4JF7ypeln4VqAVuzttPm128LP0qUAvcnLaqLI2XpV8FagHHyQW1gOPkglrgFry+rh35XDakK82f/P7Xdr8hqngIqtgfG2i+fjgGaoEb8NqyfGx4w5aoNB86tJtl0WOevn++GO5evLcf5fR3bkdALXADEuF9bpUlKs1bPifcx8vo2VDdLeO3tujhX794eA+DWqB+Xl/X0zvc/k1Vmrf9+LntGpXrhOUPb3/+Xw/vUVAL1E8qvEMxeqrSvKcLb/g81D68j8XyZ/t3D+9RUAvcgPXsDrViyUrzofmR2KjWbHjSWfekSQ/vYVAL3IBUePt3W6lK8555ePs3bJ/hfax7PbyHQS1wC9b2GoatgmSl+dA2Wza0FTp/+vv//K1t9fAeBrXAreln3nSlec/8DVvf96//eHvuFHt4j4Ba4Nb0qU1Xmve8z7bKOt76Wdtn3sOgFrg3XQzTleY977ObFPHDcjy8h0EtcG+6RCYrzYcdh34SDh6j/rgzEd0e9vAeA7XAvSlUjP7Ew3sE1AI3p0wx+tjXw3sA1AI3p0QxejCYV5UdAbWA4+SCWsBxckEtcAt+/Fg70i8bdlSaP0/p+4atj22HtnL9c+Hw2KLw9cMuUAvcgB8ty8e6N2z7Ks07+r5R63Aj7o/fPk96w58buQ/UAjcgEd7+Ptq+SvOWvm/cOpYF+zfCHwC1QP38+LGe3q5UbGeledvc941b4w03/0b4naAWqJ9UeIcqhV2V5k3QN279/l8EhevffebdB2qBG7Ce3Wc52a5K8yboG7X+65fHi+/DWPij9/aBWuAGpMI7fNHankrzJug7ax2n7Pbz8h7eHaAWuAVrew3PWshdlebNtG8c3r6akuDZ1E4S1AK3Jp55tyrNm6DvrLXP81u/9PXw7gC1wK2J17xbleZN0DdqHZ+i/vb8wlcP7zaoBe5NtNuwVWnehH2j1u4B6z+vPEndWQG1wL0Zgrin0nxSlR61fh+/a5v2NA/vDlAL3Js9xehPvCq9MKgFbs6OYvQnXpVeGNQCN2dHMfoTr0ovDGoBx8kFtYDj5IJa4BZ8fKwdiYvRm0SB+ZO+79vkFsVf/+GrhYOgFrgBHy3Lx6Ji9CZdYN7R920fgzqmNyhnd/aCWuAGJMIbFaM3GwXmXfNQuN5u7w6RHkbw8B4BtUD9fHyspzcqRm82Cszb//Z94/A+R/DwHgG1QP2kwhvfHt4oMG/CvpNlQ+PhPQ5qgRuwnt24MGerwLwJ+8afNPbw5oBa4AakwhuWRG4VmEdtj6k4/BoWD+9xUAvcgrW9hoVi9ESBeRP2ndb+eniPg1rg1sQz71aBeRP0jT8y1Hh4c0AtcGsma94HiQLzJug7Hg5bPbyHQC1wbya7DU2ywLwJ+/qa9zyoBe7NpBi9SRWYT4rRvy89ON3DewTUAvemdDG6h/cIqAVuTuFidA/vEVAL3JyixeheVXYM1AKOkwtqAcfJBbWA4+SCWsBxckEt4Di5oBZwnFxQCzhOLqgFHCcX1AKOkwtqAcfJBbWA4+SCWsBxckEt4Di5oBZwnFz+H8Zu26Al2JF0AAAAAElFTkSuQmCC" alt="" />
In strsplit(code, "\n", fixed = TRUE) :
input string 1 is invalid in this locale
v
np dist gamma dir.hor dir.ver id
1 57 79.29244 0.6650872 0 0 var1
2 299 163.97367 0.8584648 0 0 var1
3 419 267.36483 1.0064382 0 0 var1
4 457 372.73542 1.1567136 0 0 var1
5 547 478.47670 1.3064732 0 0 var1
6 533 585.34058 1.5135658 0 0 var1
7 574 693.14526 1.6040086 0 0 var1
8 564 796.18365 1.7096998 0 0 var1
9 589 903.14650 1.7706890 0 0 var1
10 543 1011.29177 1.9875659 0 0 var1
11 500 1117.86235 1.8259154 0 0 var1
12 477 1221.32810 1.8852099 0 0 var1
13 452 1329.16407 1.9145967 0 0 var1
14 457 1437.25620 1.8505336 0 0 var1
15 415 1543.20248 1.8523791 0 0 var1
np点对数量,dist距离,gamma两点协方差
半变异函数画图
plot(v,plot.number = T)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAAAbFBMVEUAAAAAADoAAGYAOpAAZrYAgP86AAA6ADo6AGY6OgA6Ojo6OpA6ZmY6kNtmAABmADpmAGZmtrZmtv+QOgCQOjqQZgCQkGaQ2/+2ZgC225C2/7a2///bkDrbtrbb////tmb/25D//7b//9v///+mpaFzAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAR00lEQVR4nO3dC1vbOAKFYUOBdnaGMAuzG+/gwXH8///jWpItX5JAIuREx/7epwNpSxsNOVV0V1YDorJbFwAIRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsgivJBFeCGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7LihFf1n4BquWULHrfchFeSasEJbzyq5ZYtOOGNR7XcsgUnvPGollu24IQ3HtVyyxac8MajWm7ZgicZXiCmq4Y3yt8COIQXsggvZBFeyCK8kEV4IStqeHdPWfbqHu7fsvv3wCcDzhIzvNXmtS7vtvZx/mB+hD0ZYqs2ZlS0fT3yHx/NxyLL2pdKV8zwls13Zf9mq97qZVvvfk2rXsJ7fY+PzYfdzz6nZWbCWzTvi6V6emO3eU3t2zDBNQHu/vhFMyKI59H+KPsmXFMJN+GtNs+maXfw3qjlzFidHbvCvidNw3vp34JIHt2Hok9p8eM/7iVaQnijfpl9NzIIbxra8Ob/auqnZ/O4aUDkXXgLmg1D/ttBeBNhmw3VxuQ1ty2F57bD1rR9XZyFRQ1v4ZtWdNhSYTtslmn4mlZd3jcbukeiYoZ32KdlqCw5u6dX+wr58MoPN8QMb267fq/2/anp1DJJkZYmuUXbPW9nkpo437ZI38T08Aq4kHbjZabmHf+KKsK7BrYFl7f9M9tsyO2EkniPjfCuQt63Fdo27/BXZnxe81x+cnr/lkUd4iC8iK8b4nBT0V1Hfv/WdBCLLN7MCOFFdI/t7IibivZNa9fQLuI1tAkvYnvsPrRT0cWoro04Pkd4EcC0Zctu3K0cD8D58HZT0f3ktP2j1Ly4JdeWNarNw+RB3TUbuqnofnLa/dF4PTbCi/O1HbG2LWv4FuyoKfvoGg0fw9k89/tlxP4a4cX5uo5Yv6xy99TWo/6BN5mKbqdFoi4GIrw417QtWw8asIct2elUtMlyEXchG+HFudrwDpZV2g0ZowcT46no4rvTIt2/GbdgsSK8OJtrNgzasn7Y69T4lxttaCenD5sW46/rZuKmoxde10+sNrae3xFenO/xcdyW9U3a/MTK4NFUdNuQGOT8+EycNRq9GPcTm3Db8JaEF5cZtGW/bDV84cRMnHua/ieTfmLT6XNfWRBeeP3xDmVXQZbHj3dwNapfDxy2MPizmbhBE+NIP9GFNye88Pz7tmnC2masfzDhUvRlk/dzn83E5aOKd9JPdOFt/qmd9zyEd+Fss7J733YLfZt+ln8w1Z66c3SG4oInPTkTN2qHHPQTu4ISXtQ+H21K/fKv6OvApk97aiZuXJVP+4mEF73J8Q6u+dAkxD+Y8bmPzsQdjl6M5jwILzwXXv++7eq95qN/MONzH5uJ+2zOw7Dh3T0RXtT9aFRtg3HV8FqTTaGnRi8YbcAR/dkk3fEO12o2WKOZuC8m7GqaDTihCezVOmzeZFPomc9IeJX1swqFf93DD43279tfD5WlgfCKGh8abU44LE168+ZB8EE4/n37y0mKNBBeTeNDo91Ju032XDe9CD1ALz+ov5M+/Z/wSpocGu3De7XhgSQQXknTQ6O7ZkMb3iuchZMCwqtpcmh0t/qrHR4gvAFfdpW/Bcb40GizCMuuInQdNsIb8GVX+VswZmYV+vHYps91//fBhQrLRHjl7X5Op3EPL1RYJsKbpH72wVyJ200STNda+VmFyVnRwUNlYghvkvo9DXaVtktvf8hSx88qdG1e+6VrGSkjvMk5sqfBTfUPDlny/KxC3o6ZmSp7LdklvKmZ7GkY7AYf3F0Ji/CmZTL7UN7/vTlydyUswpuWyZ6GwhyvYSd/h5tn4RDexIz3NLj7cA/uroRFeFMz2tPgumqHd1fCILzpMrMPLrwHd1fCILwp8pMO1WZ6dyV6hDdJfvahGN5USXjHCG+a/OxDObhJh/COEV7IIryQRXghi/BCFuG9suO3htAVC0F4r+zorSGHK3VxBsJ7PaOVulZ7Jtexlbr4GuG9mvFKXaO7NYSVumEI77VMzwmp/a0hrNQNRHivZbJSt/bnf7NSNxThvZrxSt3ab5RkpW4owns9o5W6tb+Jj5W6oQjvLQxvDWGlbjDCe10nbg2h5g1BeK/s+K0hhDcE4b22o7eGEN4QhBeyCC9kEd5IRrdKCVxGsgSE9/smt0o1TVnbF/MPMBPC+23jW6Xs6K05oMk/wFwih9efyW3ORD7oQS8yvJNbpSyfWcI7p7jhrTbd8E957EVbcniHq8Xq4m47eYAZRA1vkf3R1bz585HfX2R4D26VMjt83P992ccZM4ga3n8+umbD/q9RjdNO3y8zvJNbpYz9W9tk8g8wgzNjdWmbt3r57cgw0ULD2/PLFfwoA8MNM5qpw2YGjqo/pxcqLT+83XiZT3HwDez42lyjDbWpfaeVzoLDe3ir1OR6KcRHeCPpb5XqznXMhwc8YgYzhddUOLvfVzHO2xndKjV+gHnMEV57rmyWHb5hLjq8uDqmhyGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQlZQeO11o0fPxInyZGnpzy6t3abKkhtQEhES3vJuW/z4aC+zmeHJ0jK86bq/4Lq78ho3FBBes53bXHxXXHwkgVp4pzddDy64vvx/HtEFhLfavNrwXn6ehlh4D2667i+47q68xi19o+a9/AYbrfAenF06uOA6p+JNQHibt7i8x6IY3v7s0sEF1wHtfcQXOtoQdFeIVninN10P3m04+zEJjPN+YnTT9fCCa+78SwLhPUuT3MEF17Qa0hAUXjdUv45JivFJpa7K5dDdNISE172CAcP0iuEd3HRdd//rNHnTEDjOayx+nLc1PKnUhZcZijQEjvMay59hQ9pCmg1uhDdgkonwIqagDpu53nIF47xIHENlkEV4ISskvPs3N1xPhw03FTTOGzpSRHgRU9A4b+jkKOFFTN+YpJjtyYCzBE1ShG7fIryIKWgxeujGWcKLmIKaDdliRhvsWoVuczt72sWse5zXbWUfbm5nT7uQdYa33SLRbmUfLY9jxZiOkPB27QbZZkO3Oa3dyj7Y3M6ediWBi9Gb1ztgO0Ei4W33tPut7P3mdva0SwmcpCjNiTmq5za04e22sveb29mdpiVwkmL3693+N8uTza49Cmd0cIpr+LLBR0ngTorqZSscXtthG25lr7tNlexpVxK0k6KppPJn3WaDU4xHdW2WaTVICdv6/mBGHC7v2iQVXsvUtIPN7expl7LOcV7PjTb4ze00eaUQ3nqwuZ0ZCikrDy+UXRrepkuzpIU5UEbNC1nfODFnticDzsI2IMgK2knB7mGkYOU7KaCMDhtkEV7IWuVOCizDGndSYCGWupOiW5jbLjougs4TRtoWupOiu5692ti2Td4kl+WOixN5J4X/tf3bkSbx/OEd72k3x4iYUrg15pe/UyBtcXdStBVdbdfI5gend8we3sme9jJ7thMqbpkui3WXJupOiiL7o615j9fMc4d3uqe9bmcD2/ByjtPCRB3n/eejC6z5bAIc9GTBJnvajcHunoBr6pG0yJMUJ8Lbzidfqdkw3NNeDjpshHdhzozVeLTh9FF0t615j+xpbxcR5U3P7e+D8kBb0CTF6VvYbh1eY7SnfbAC7vKhPaQtsNlQuhNtD+xu2mEbmNS8BkNlSxPe5t2/HVnb4AN7m6Gy3ii8tqHDSNnizFHzmiMQjg6l3azmNUuJyO7iBM2whd08zMIcxBW0toHbgJACFqNDFuGFLE7MgSxqXsgivJDFBkzIChrnDZ1nJbyIibPKIItTIiErpM07umh6hic7zc5M2386fi87m9rXKyi8TzfosJll5vu3JqeFWRDk97KzqX3FgpoNN1jbYDf4tHvR7t/9XnY2ta+ZSIft0X+wC3P9XnY2ta+ZSIdtGN78/t3vZWdT+5qpdNge+4q36bH5vexsal8zmZPRH3127X2V3V52NrWvmNrahtKNlPV72dnUvl5i4S2yQXvb7/ZkU/s6BYXXHsKYX95t+3Z4x41bP0LGUNk6BV1ldbf1Q6xzPNlJu6f2Kf1edja1r1ngUJmp6y6/Iv274W3PwrGhbWeF2dS+YoGTFCa8l98lyMIcxPSNmjdP+U4KrEB4mzdgZoDwIqbQ0YaglibhRUxi47xAj/BCVtju4WczanX5zADhRUxBJ6P/+Ng9HTt/N9KTAWcJHOc1K2gZ58VtBYY3b4J7/Rk2YCio2fBQbczaBpoNuKnA457utiHbMAkvYmKoDLIIL2QRXsgivJBFeCErwfC6rfUP7qLC7g5h4ECC4R2daRJ+6RsWL5nwdoeK1ONp58un8bAaqYS3P86pLgZ1rd8vDBxIJLyjg/T+1Z0gbQ/Vi/LMWKL0wmvWTbib493KYeCERMI7bDZYruHLcSL4RCrhHXTYLHd26eW767EiyYR3wo6X0WrAZ9ILr6tzbbOBm1LwmfTC6/bG2Q4bTV58JsHwmvOi3ZwwMxT4TIrhBc5CeCGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXghi/BCFuGFLMILWYQXsqKGd/+WdYsYd09HblwhvIgpanjz/paV8thBN4QXMcUMb/WyrXe/XNWbH9t9RngRU8zwmuCaADf2fx3bwEN4EdNM4a1efhteTtye90h4EdOZsbo0vGbnevXndAca4UVMM9W8xuDhZU8GnGWuDltNeDG3mYbKzJkhu98Z58Wcooa32thJCjNMVmTZ4aELhBcxMT0MWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsgivJBFeCGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsgivJBFeCGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsgivJBFeCGL8EIW4YUswgtZhBeyCC9kEV7IIryQRXgh6zrhzYD5zBveqH/L9amWW7bgcctNeCWpFpzwxqNabtmCE954VMstW3DCG49quWULTnjjUS23bMEJbzyq5ZYteIrhBW6A8EIW4YUswgtZhBeyCC9kEV7IIryQRXgha43h3T1l2Y+Pev+W3b/X3ScBu199cZUKb8s9xzd9jeEtH+yn/MH86D6lr9qY13tcaoXCu3LP8U1fY3jzZ/OxetmaOqH9dOsyfa3I/miKOS61QuFduWf5pq8wvPu/tubTzkWh/XTrQn3tnw9T1HGpFQrvyj3LN32F4a1efsvutnLhda+8Xni7xM7wTV9heHc/t3X157vU628ph3eWb/oKw2uovf6WcniN6OVeb3iF+jyt7iXX6rCNwkuH7ZvK+6YC+/1DabTJsS+33lCZLfcs3/QVhrcuMjtCXm2GnwTY8I5LLVF4W+45vulrDC8WgvBCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsgivJBFeOdQ3m2rzevg56+nvxbBCO8cmvAOfzoKMqIhvHMgvFdBeGMrsuzuv22zwZwul722Z8zl5rFJ8r839oH5yuyh/fx862IrIryR5ffvdZm58O6emoyW2asNstktWzQ1crVpPhTtf9Xm2X7ePZHeyxHeuGxe69yFt2x3yJrH9owN87smr+aB/Wx/03wu098EnB7CG5cLYTva4A737Nu8pWku2J80H1zMu/Zx9zNcgPDGVQzDa85Q9nk1Bxf872kQ3p+uU9ck2iK8FyO8cY1qXisftH93T6dqXgQgvHG5SBaD8DYPfPu3HDQb+jYvdW4gwhuZGTvoRhtspWpr4ee20s2efXjtV+7fHuxnUz/fuuR6CG9sw3Fe05610cx+fJhf37ZtCN8K9uO8DDYEILyQRXghi/BCFuGFLMILWYQXsggvZBFeyCK8kEV4IYvwQhbhhSzCC1mEF7IIL2QRXsj6Pz/sSTE/Hf9yAAAAAElFTkSuQmCC" alt="" />
设置半变异计算时点对距离
v <- variogram(log(meuse$cadmium) ~ 1,meuse, width = 100)
plot(v, plot.number = T)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAAAbFBMVEUAAAAAADoAAGYAOpAAZrYAgP86AAA6ADo6AGY6OgA6Ojo6OpA6ZmY6kNtmAABmADpmAGZmtrZmtv+QOgCQOjqQZgCQkGaQ2/+2ZgC225C2/7a2///bkDrbtrbb////tmb/25D//7b//9v///+mpaFzAAAACXBIWXMAAA7DAAAOwwHHb6hkAAARy0lEQVR4nO3djXqbRgJGYRLLbvpjpRu3a7ahRrLu/x6X+QUklEjjGYkPzvu0luOkMU2O8TDAUB0AUdW9NwBIRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQRbyQlSde1S8Btvumcm828SoS3W7izYntvinizYntvinizYntvinizYntvinizYntvqmZxgvkdNN4s/wugEO8kEW8kHWbeK8bowAXuTAr9ryYH4YNkEW8kEW8KK5+eLOvuy/fzUtTVZ9ec/y+xItSHh/da1u5ePfbzybeuit39/QtwycgXhTyaP8xzbp426oy8e63z90PGr8z/hDiRRmP4U3z8Lcpta2eWxNva4cMbY6BA/GijBDv7pfXMOYdxltlGDcQLwpxw4b3l+fDKF433G2IFyW55pqqcqFdPUnw6AYNb+N4/QEb8aIgN0nQdKnZ7/FNV971I9Vu0HA4ivdQd0du/3xlzIv8/AyXmyR4f9l079cbN0ngfnSNxl9+YPezPl7DT/l+DPFiLMxwuUmCGK91Gm8cWoR98lSVR3te97szVYbcjicJ4rDBaI6HDX5o0Y8o/ImIsVG8++0m00wZ8a7T6FisHX5r9/H2kwRt3Kt27z37/340tBiMKPyJiMnPFva83X+UdHrY797j1rbcBrQq4xO2o52q3SHaX2P/iZMEdRfc7slH+/7iMhwPLfxPbfoTESWMDhjd1hLvioxP2I6Hs02M7vFxMEngZ2XDT7p6Js4/xBFFiXjNFo0PGN0GEe96HJ2wHcUbd65OnCQ4OpnrWj4ZWgxGFAXiDV9zfbx+a4lXhRkqVpX5ywvH9v1HLvOjY7H6zFDV1doVGd/xv8nj+PxDHFHkjzd+zfW7d7+1xKvCfic34uAvfuRSxyds+2Mxd6nXkfGYt7Y7a//LRkMLx++dC8Ybd+9ha4lXgD3OClX0g7/TTk73zoNAw280dSw2OXXlwqwr30wdJiS80fmHMKIoPWxwX3R+a4l3/vw36eH4wMbbnIwYTvfO5s24zMljsTr1nMFoaHE4lDtgc9z/Stha4p09/22z/q3q51nt4G/0kem9s/s+Xw8rnzoWmxw1XMTtwgcjimJTZZb9OolbS7yz5+Ldb20m7pu8bXb4kXN756OZruhoh5l+V04/tPC/Q6l4p7aWeOevH/PFNMKxffjIub2zG0ecBnU05s1ztrasfvcet5Z4BfRjvrjTmZx5Pd07n7vn5uhY7HTXPENx9x63lnilxCOyWLH/yJm9c8YbxmaIeEWcni0YHeSf2TufGzbMkP1m8P7ivhm042m4M4hXhZ0yqIdnC+JHxoZ753MHbPPTusstuu8RTThpGK8VOod4ZcQx3+k73ulOeWKqbGZGF1eOv9Z++jVHvEtyunc+PUkxLxMXV4btPbpWaALxLsrpTjnbwmBFTF1cGS67mbpWaIx4cUenF1faK9rNywVn/YgX93R6cWXrj9cuGOwQL+7q+OLKNpwhvOBaIeLF3Q0urmxCu5dcK0S8mAd3c0ec+rvkWiHixTy4C93i7vaS+T3ixTyYeP34wXR7yVlB4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4p2Bflnd3ZN7vXbR83Ui3hmIy4S09sFQm4RFz1eJeO9rtKyuWyLELgwtsMbN/RHvXY2X1e33t6eLnuMU8d7T0bK67ed/tm7R0dFCuziDeO/paFndxjz71CxoPlr0HOcQb1lx2iAs3jmeSBgvq+seMxbHuwx8f4J4ywrD2H7xzvFEwmhZXXfTYb9udPKTIlaCeIsZTST0i3ee2592Ubuf6tfXZb7sx4i3lInn89jFCCaenhZW091vJxc9xxnEW8jU83nsqp0TEwlxWd3mJ4ueY4R4Czl9Po9bRG5yIiGuptuee1YqJhBvKafP52n7ixUYEeRAvMUcP5+nHQwWmEjIgXhvwE4bNMOBLhMJORBvUf20QVi8k4mEfIi3rDBt0C/eyURCNsRbWB1W/I6LdzKRkAvxQhbxQhbxQlbmeHdf/FG0uZPw5FlExIuc8sa738ZrUafuYyFe5JQ13qb6I+x5J+eCiBc5ZY3337cwbHj/a+oMEvEip0Jj3v3XX4cPG/dPOFxUvP3tPG14sPq8n7C+PBdmdW285tz9/s/jU6CLirdfKaQLtg2PDrvk2XfIpNRsw8HsfY//HpcS78RKIfXGPS3X3PuLGyHe6x2tFBLvTjOI94YKxWt2S7vflznPe3SDjxs+hP1ww7DhdkrEa+/GqqrTq/6WFG+8nceNcv1blrm5JU4PX298g88wXjNsODmviFKIN8HoBp/xsIHphhsi3g/pyh0fsHF32g0Rb6J4O0+cKuMGn1sj3lTxdp54kqIOS4bgNog3WbydJ54V5gaf2yJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyCJeyEqKd7+tHt4SHmhDvMgpJd7202vz8GaX5iryyYCLJMRr7jE0jydvrr5PlniRU0K8++03G+/1N3kTL3L6wJ63vnphI+JFTulj3ub6u7yJFzmlzjYkLWBPvMiJeV7IIl7ISorXHKq1CcsoEy9ySonXTTPst1c/fUErXvcl6nwbPLkKc5E4z2ssfJ63jc9Otl+m8clVmI3EeV5jmWfYwqrn9voN9679H2Xd3flJGTa4Gd7d0xKvbYjPm2ge/vbxuv/RhhHD7CQdsO2eljrP+xjedKOEcAaxtvvc8OQqzAdTZSMhXjM08vG6q+fik6swH8Q75ocNg2s3ho/3YeA7Kynxvr+4+aPlHrDZqQUf7/D6Ix71MytJ87yp+x+FeK0mTu8eRtfcM182K0nzvKkjP5l4LbfL9TtbnlM1Qx84SVHsk82EizcMeeOTqzAbSScpUqc8FeONp2J4TtXsJF2MnvqXqBUv5i5p2FAteLYBOpjnhSzihayUeMO4gWED7irxYvRmk3K2iXiRU+JJitasmMO6DbirxJMUuy/f7b9FPhlwkcQ7KfZfX4kXd5Z0J0V3pFY/Kw8b/MmzcEV9m3RpPe4t7db3jZlxuP4ilXvHG+5Pc/dWmq9Be+WCedNSr541zfOG+9PcvZX24jhznYa7obTmHjU5K4o33p/W31tp43VzftffC417W2G8g3srD003WnBXmHOprp5r4+2+2cpemPN4fG9la+8HdsNdBr16VrTn9Qdso3Wx318e3ohX1QdWzCn2yYoa3lt5sM0ybFC1utuABvdWGt3RGgdsqpLupJC/e9jseeMtlUyVqVrnnRR22GDe2HA5SSFqYQds8YxvMxgZnF6D4ca88ZbKhtPDkhYTr5tJCGd8zfytv090v2U0u1BLuZPCzuEOzvjaVRbMmzZhO6Eh850U8Vv0+8tEM+Xijad+j+Ntq2cmwZYq750U/bfoLpzT4/ebxNscDRuYwV2srHdSNNUf/mPTF6uXHjYcwhnf0SW6xLtUWe+k+PctfMy8ml8T/nPvgxv7I+FaXXvG1y5kGZ47QLxLdWFWl95JcSbeqd+lGHPGd3jSjHiXKvOdFHOItyt3dK0N8S5V5nne+8Ybz/iOVtMl3qUqFO/ND9iceMaXMe8aJM02nL+GJQZ746myIJ7xrfsHTxHvUiWdpDj/FDYbr1k/fHJMPJsLc7AIicOGNukp0sSLnNLHvO8vc7q2ASvEnheyks6wpT15mHiRV+bZhiyfDLjIYi5Gx/oQL2StacUcLAx7XsgiXshayg2YWKGked6r1/O/7pMBF1ndWmVYjtWtEonlSBnzujVBy30y4CJJ8T7d5YDNXlPxHDbAnqJmkbFVSxo23OXahveXrtPGRNvaZ/lsBkuTYZU0DtjMogzxdnY35u7eiUuTYZ0kDtjCcjiHwTL8/dYQ71opHLANFiIztwW3n//Zxrsr3dJkWCWFldEH8bZdtI35xH6H2/YVY3Ukrm147NvdhH1tuKE9/Xwf1EnEG1bRayt/qHY49MsDM92wWknx2idP19d/v/7gl0DjVy918YaB9+Qi11iDpEdZfXptHt7sRFWRT3ZG4xeLdlN1xyuSYX0Sp8rM8qbXP3bvQ/GGpcfcA1jdimThHaxS4kkK08/1u7wPxesfXWlGuG04TxyXJsMafWDPW199mM+FOcgpfczbXL/PI17klDrbkHQ5F/EiJ415XmAC8UJW2t3D5gKD6vrTspd9MnftxGZ49TkwIWll9Ie33dPUsv0f+GTxMWr9ubP+6nNgSuI8r3k0as553sEVu/H3HT1MDTiRGK952k7GM2zDK3YPzWhfy3U3OCdp2LDZb821DfmGDaN469+GQ92aPS/OSFzu6dNryu03Fw0bzBeGe6KQ0XLEhnPmMlU2OGCzwtMrOV7DWXOJ95i/3JH9Ls6bbbxmvqyhXfzA/OLtLzFPuPQHazK/eN3Jj+6Arb/6HJgyw3jDJeaDq8+BCXOMF7gI8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UJW1njfX6qwmu7uaeKhFcSLnLLGW/cPqminliYlXuSUM97919fD7ovb9dZT64wRL3LKGa8J1wTcef9rtMJY5V27dcAPXJjVtfHuv/46sUIe8SKnQnteszb0/s/jR6EQL3IqFK8xePe6TwZcpNQB24F4UVqhqTKzKv/ud+Z5UVLWePdbe5LCTJM1VXX69D/iRU6cHoYs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oUs4oWs28RbAeWUjTfr73J7bPdN5d5s4lUkut3EmxPbfVPEmxPbfVPEmxPbfVPEmxPbfVPEmxPbfVPzjBe4A+KFLOKFLOKFLOKFLOKFLOKFLOKFLOKFrDXGu3uqqoe3w/tL9fn7IbzM3+5Lv7VC2243u8wf+RrjbTf2pd6Yf8LL7O235i98vNEC2+42u8wf+RrjrZ/N2/3XV7NX8C/33qafaqo/uq0cb7TAtrvNLvRHvsJ43/96NS8714J/ufdG/dS/b2ZLxxstsO1uswv9ka8w3v3XX6tPr2rxur96uXhDsUX+yFcY7+6X18P+z+9KAVjC8Rb6I19hvIZYAJZwvEaBzV5vvDoHPV74O5c6YBvFywHbh7Wfuz3Y729C002O/fuWmyqzm13oj3yF8R6ays6R77fDl/mz8Y43WmHb7WaX+SNfY7xYCOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOKFLOItof30ut9+G/z42/lfi2TEW0IX7/CHo5CRDfGWQLw3Qby5NVX16b9+2GDWl6u++VXmavO+Kfk/W/uO+ZXVxr8+33uzFRFvZvXn74e2cvHunrpG2+qbDdncL9t0e+T9tnvT+H/322f7unui3usRb16210Pt4m39PbLmfbvKhvlZ06t5x77anzSv7ezvAp4h4s3LRehnG9zynv2YtzXDBfuD7o3LPIyPw49wBeLNqxnGa1ZRjr2apQv+9zSI9xd3UNcVbRHv1Yg3r9Ge16oH49/d07k9LxIQb14uyWYQb/dOHP+2g2FDP+Zln5uIeDMzcwdhtsHuVO1e+NnvdKvnGK/9le8vG/tq9s/33nI9xJvbcJ7XjGdtmtXDm/n4qx9DxFFwnOdlsiEB8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8UIW8ULW/wFP10FLsp8RnAAAAABJRU5ErkJggg==" alt="" />
半变异函数值越大协方差越小。Nugget表示不确定性,Sill最大gamma值,Range半变异gamma不再增加的点。 PSill= sill - nugget. 球形曲线、高斯曲线
经验半变异函数对象
m1 <- vgm(psill = 1.5,
model = "Sph",#Sph球形曲线
range = 1400,
nugget = 0.5)
Warning messages:
1: In scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
EOF within quoted string
2: In strsplit(code, "\n", fixed = TRUE) :
input string 1 is invalid in this locale
m2 <- fit.variogram(v,m1)#拟合半变异函数"
plot(v,model = m2)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAAAY1BMVEUAAAAAADoAAGYAOpAAZrYAgP86AAA6ADo6AGY6OgA6OpA6ZmY6kNtmAABmADpmAGZmtrZmtv+QOgCQOjqQkGaQ2/+2ZgC225C2///bkDrbtrbb////tmb/25D//7b//9v/////iMXOAAAACXBIWXMAAA7DAAAOwwHHb6hkAAARWUlEQVR4nO3dDXvaVrOF4ZUPO/2I0xP3mBPXgPn/v/JYbMDggK09jGa0pee+2thtVpfmdebSK2QD2gCNUvYAgJWyBwCslD0AYKXsAQArZQ8AWCl7AMBK2QMAVsoeALBS9gCAlbIHAKyUPQBgpewBACtlDwBYKXsAwErZAwBWyh4AsFL2AICVsgcArJQ9AGCl7AEAK2UPAFgpewDAStkDAFbKHgCwUvYAgJWyBwCslD0AYKXsAQArZQ8AWCl7AMBK2QMAVsoeALBS9gCAlbIHAKyUPQBgpewBACtlDwBYKXsAwEojaomn7AGMlD2AjUbZ59MST9kDGCl7ABuNss+nJZ6yBzBS9gA2GmWfT0s8ZQ9gpOwBbDTKPp+WeMoewEjZA9holH0+LfGUPYCRsgew0Sj7fFriKXsAI2UPYKNR9gnwFLq8Li1AIddYSAtQyDUW0gIUco1d/M+rrlGAXnqu1Ue/3/NgLi1AIddYSAtQyDUW0gIUco2FtACFXGMhLWjEzc3AB5BrLKQFbbjZ/jUkucZCWtCEm8Mvg5FrLKQFTWB50S4uG9AuHrABl8g1FtKCYQ1+wnQj11hICwY1/KWqG7nGQlowpP1NgptROT+r+v1P6hkLacFgPlyX12DMQO+TayykBWYXdu5kY/tcNozk0kKusZAWWL3ZuQtn2Y/PqgHffzg9HpcNs3e0cz2uDPoVRbh4nle//75nLKQFRmXnrtvbQ1Po7l44nPoV9IyFtMDGZW0PXT49vY51+OUt9SvoGQtpmZ/rz5S7tR3HTYJaXDY07Mr/k3Y73abhAVuz+j08OvcH7HmhMEZyjYW0zE2v5f397DzptS3kGgtpmZ0elw0nCz71E+6BXGMhLfNT9W2DWaxtIddYSAvOeP1RmuxJAsk1FtKCc+a1toVcYyEt+M0cN3fD8k5A25t7zfByjYW04KD9i9yrvgEj11hIC4rW97Zz3c+nyTUW0oLNNDZ3w/LO0EQ2t8Nlw6xMaHM7PGCbjYlt7pXkGgtpmS029w25xkJa5onN/Z1cYyEtc8TmniPXWEjL7HDSvUCusZCWeWFzL5NrLKRlRtjcd8k1FtIyF2zuR+QaC2mZBTa3B7nGQlqmj83tR66xkJbJY3N7kmsspGXiOOv2JtdYSMuksboV5BoLaZkurnXryDUW0jJRbG41ucZCWqaIzbWQayykZXLYXCO5xkJaJobNNZNrLKRlWlhdO7nGQlqmhCuGa8g1FtIyGeUVQ9heM7nGQlqm4XVx2V4rucZCWqZgd7XA8l5FrrGQlva9Xuhy2XANucZCWlp38hiNB2xXkGsspKUVZ/eS2wuO5BoLaWnEuSsCNteVXGMhLW0491iM1fUl11hISxt+X15Ou97kGgtpacTpZQPXugOQayykpRVH68rmDkKusZCW5rC6A5FrLKSlMazuYOQaC2lpCqs7ILnGQloawuoOSq6xkJZmsLoDk2sspKUN3BsbnlxjIS1NYHMDyDW2Wf3xa/fJrfTlydjSPM66IeQaW9993i3v8qu9pXWsbhB5xh719/7Mu/huP1jbWN0w8oz997S/bHj+98F+sJaxuoHkGjtc865//KlPr/urnZrJWsTqhuq5Vh/9/t5+eVffHjbrf34ZWxrF6gaTa+z1bsOmO/u+vXTo2zJ2F57gEz7H3Mk1No/l5Qk+IyHX2GF5l59/bVZ/TfM+75kn+LC6KeQaK8vb3SZ7lD6/veSd7PKyujnkGgtpSffmsoHTbha5xkJa8t3cnP8cseQaC2kZE1Y3k1xjIS3jwermkmsspGUsWN1sco2FtIwDq5tPrrGQljFgdcdArrGQlnys7jjINRbSko3VHQu5xkJakrG6oyHXWEhLLnZ3POQaC2nJxCXDmMg1FtKSh9UdF7nGQlqysLpjI9dYSEsOVnd85BoLacnA6o6RXGMhLfFY3XGSayykJRyrO1JyjYW0BOO0O1pyjYW0hGJ1R0yusZCWQKzuqMk1FtISh9UdN7nGQlrCsLsjJ0tsfacvT2dfxNTlYOPAJcPoyRBbfnp4/PK0vqve3p4HGwNWtwGqjz3ff9+8LO/m8feXxPE5WD5Wtwmqj63vfm6XdznV5WV1G6H62P7Mu/jtDVOcDpaM1W2FDLFyzfuonwMdLBWn3XbIElvfScev2u98sESsbkvkGgtpGQ6r2xa5xkJahsLqtkaWWPdQbamJfZOC1W2ODLFym2F9d+5NLj0OloLdbY/qY9193s6k7vOyuw1Sfay7z9uZ0HfYji53ufJthwyxcod3dTuVn204eZV+TsLtkCW2up3Qfd6TU+2Zt6nCaMk1FtLi6s1VAsvbErnGQlo8/f5OluxuO2SIPd+XN9tu/gHbuQdnPGBrhwyxRfXW1h0sCmvaONXHDE+hqDtYDE6xzVN9bP9NisEOFoHVnQDVx57vq78vXHew4bG6kyBDbFn/Y+hVBxscqzsNqo9tfxS95bsN7O5EyDUW0nIlLhkmQ66xkJbrsLrTIUNsf93Q4GUDp90pkSG2+PL0+HWzum3v2cOs7qSoPtZ9k2LZvWJOa6/bwGl3YlQf675Jsfrj1/bvQQ42DFZ3clQf655Jsf7x0NbysroTJEOse/7P4ntLlw2s7iTJElt87e441P9sWc+DuduvLjs8LXKNhbTUOqwsP2g+MXKNhbRUujn5hO2dELnGQlrq3Jx+xvJOiCpj67vvTf1gzpunBrO7UyLXWEhLhbfPDWZ3J0X1sf0r5gx2MDfs6rSpPtbK04A4z06dDLH6V9irO5gLVnf6VB9r4QEbqzsHco2FtHyM1Z0HucZCWs67eXNDF9MnQ2yMz6R4vYfLaXc2ZIi980yKw49JPt+f2e2eBzO4Of0Fs6D62DvPpFjf7Td28bX7y3Ywg/3ectqdE9XHLj+T4lF/7/7d+R9W73kwixu++zs/qo9dfibFf0/7f9d97DL7/3znmkk/cMPuzk7PtTr5/XeeSXFhec+1+GN3Z0aW2OVnUiQuL5e7syPXWOLysrrzI9fYYXmjH7Bx2p0j1cfee9/Ww8LG3ipjdWdJhtji8ruwbZf35cHc+WvingerxWl3pmSLLbs7FON442xWd7Zkjj3fj+FnG1jdGZMtNpIzL6s7a6qPbd9D0PDOw/7Ly+rOm+pj791tcDlYT5x2506usZCWHVZ39uQaC2kp2F2oMjaWV8xhd9HomZfLXWwaXV5WFx0ZYslPwOS0i0L1sef76tfzrzvY+1hd7Kg+lvpaZZx2caD6WOarRLK6eCVDbPXN8r3h/ge7iNMujskQW93mPGBjdXFC9bHn+5SfbeC0izdUH0t4wPayuKwu3lJ9LP4B2w2nXZwhQyz6AdsNr+SEc1QfC//BnO1pl+XFW3KNDdLCiRfnyTU2RMv2tMvu4neyxF4uHL48LeoftvU82AnWFpfIEFt+enj88tS9xvQwBzvCKReXqT7W3SrrXt70cfAHbKwu3qP6WPdNim55699LsOfBdlhdvE/1sf2Zd1H9Y709D7bF6uIjMsTKNe+jqr9L3PNgHVYXH5Iltv02heE1c3oejNMuepFrzKmF1UUfco25tHDaRT8yxLo7vI9S/dMwex2M1UVPMsQWX55Wt+detv+Kg+1Pt5x20ZvqY9193qV+ut7n3f/oDauL/lQf65Z38bK4jt9hO7x1cGUhZk2G2OLr+q772Qa/y4bd8rK7qCFDbH2nTw+Wp2FePtj2DdvZXVSRa8zewuqimlxj9hZ2F9XkGjO3sLqoJ9eYsYXTLizkGrO1sLowkWvM0sJpF0ZyjRlaWF1YyTVW3cJpF3ZyjdW2sLq4glxjdS2cdnEVucaqWlhdXEeusZoWdhdXkmusooXdxbXkGuvdwuUurifXWN8WVhcO5Brr18JpFy7kGuvVwurCh1xjPVo47cKLXGMft7C6cCPX2EctnHbhSK6xkBagkGsspAUo5BoLaQEKucZCWoBCrrGQFqCQayykBSjkGgtpAQq5xkJagEKusZAWoJBrLKQFKOQZe77X/gWnV7dn3rSi58GAXuQZW7y+UcXy3Kv39jwY0IscY+sfD5vVH+XUuzj3lvA9Dwb0IsdYt7jdAr94/vfk/TG1UzUa8L6ea/XR728dLe/6x59n3t+1VwvQkxxjR8u7+vawWf/z9t2Ceh4M6EWOsaPl7Rx9WncwoBc5xo4fsG1YXgxNnrHXW2Xdu2Ou/uI+L4Ykz9j6bvtNiu422aP0+xtk9jwY0ItcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjYW0AIVcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjYW0AIVcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjYW0AIVcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjYW0AIVcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjYW0AIVcYyEtQCHXWEgLUMg1FtICFHKNhbQAhVxjIS1AIddYSAtQyDUW0gIUco2FtACFXGMhLUAh11hIC1DINRbSAhRyjV38z4HhDLu8ri3xlD2AkbIHsNEo+3xa4il7ACNlD2CjUfb5tMRT9gBGyh7ARqPs82mJp+wBjJQ9gI1G2efTEk/ZAxgpewAbjbLPpyWesgcwUvYANhpln09LPGUPYKTsAWw08j4gjLIHAKyUPQBgpewBACtlDwBYKXsAwErZAwBWyh4AsFL2AICVsgdIsLqVvjxtnu/1+ddm/2H8Vn+8TtvQ7Nuxh/mSy6GjNcuv2w+Lr91f+w+jt77r/sBPh25g9jL2MF9yOXS0ZvG9+3X946E7K+w+ZM/0oUf9/TLl6dANzF7GHuhLrusrWvP870P3YVV2Yfche6gP/ffUTXo6dAOzl7EH+pLr+orWrH/8qU8PrS1v+aNvbnn3GzvIl1zXV7Rm9e1hs/7nV0sLsNXw8g70Jdf1FS1qbAG2Gl7ezgBj6/qKFr187dp50LOz/zNv6gHbyfLygO1qy88vZ7C/nhq63VRs/7ybu1W2HXugL7kcOlrzqO098vXd8Yfx2y7v6dAtzL4de5gvuRw6gBTKHgCwUvYAgJWyBwCslD0AYKXsAQArZQ8AWCl7AMBK2QMAVsoeALBS9gCAlbIHAKyUPQBgpewBACtlDwBYKXsAwErZA0zS8tPD+u7n0T//vJyFmbIHmKSX5T3+x5NFhhtlDzBJLG8IZQ8wOY/Sp//dXTZ0ry+nn7tXmVt0n3eb/D9320+6pL7uPn7PHrtFyh5gahaff22WKsu7un3Z0aV+bhe5e77s48sZeX338svj7u/13fftx9Ut21tP2QNMzHZfN4uyvMvdc2S7z7evstH9brev3Sfbj9vf7D4uR/8s4BFS9gATU5Zwd7ehvLzn6zXvsrtc2P7Dyy9lzffXx/t/QgVlDzAxj8fL272K8mFfu5cu+L/bo+X9Vh7UvWz0FstbTdkDTMzJmXdrcXT9u7q9dOaFgbIHmJiyko9Hy/vyyeH6d3l02fB6zcs510jZA0xNd+9gf7dhe1LdnoW/7066+n5Y3m3y+f7r9mN3fs6evD3KHmByju/zdtez29XUl6fu3z/sriEOV8GH+7zcbDBQ9gCAlbIHAKyUPQBgpewBACtlDwBYKXsAwErZAwBWyh4AsFL2AICVsgcArJQ9AGCl7AEAK2UPAFgpewDAStkDAFbKHgCw+n9+2wly2Og4HgAAAABJRU5ErkJggg==" alt="" />
拟合计算出的模型参数
m2
model psill range
1 Nug 0.5855785 0.000
2 Sph 1.3253037 1224.936
开始空间插值
数据准备
data(meuse.grid)
data(meuse)
head(meuse.grid)
x y part.a part.b dist soil ffreq
1 181180 333740 1 0 0.0000000 1 1
2 181140 333700 1 0 0.0000000 1 1
3 181180 333700 1 0 0.0122243 1 1
4 181220 333700 1 0 0.0434678 1 1
5 181100 333660 1 0 0.0000000 1 1
6 181140 333660 1 0 0.0122243 1 1
普通克里金插值
kr <- krige(log(meuse$cadmium) ~ 1,
loc = ~ x+y, #位置信息
data = meuse,
newdata = meuse.grid,
model = m2)
[using ordinary kriging]
head(kr)
x y var1.pred var1.var
1 181180 333740 1.831241 1.1606001
2 181140 333700 1.905750 1.0508440
3 181180 333700 1.834357 1.0788180
4 181220 333700 1.760312 1.1129144
5 181100 333660 1.985888 0.9396745
6 181140 333660 1.909244 0.9662369
var1.var 估计值的方差,越大越不可靠。
显示插值结果图
In strsplit(code, "\n", fixed = TRUE) :
input string 1 is invalid in this locale
levelplot(var1.pred ~ x + y,kr )
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAArwAAAGwCAMAAAB8TkaXAAAAk1BMVEUAAAAAADoAAGYAOpAAZrY6AAA6ADo6AGY6OgA6OpA6ZmY6kLY6kNtmAABmADpmAGZmZmZmtv+A//+QOgCQOjqQ2/+R//+h//+z//+2ZgC2/7a2///C///U///bkDrbtrbb/9vb///m///1////gP//kf//of//s///tmb/wv//1P//25D/5v//9f///7b//9v///9QM0KDAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAUp0lEQVR4nO3dD3vT1hWAcQGlg47AspCmGdRdytZ6pHH8/T/dLOs61rWPdP9L91jv++yZoE6OhfLDyLItNVsipTVzrwBRbOAltYGX1AZeUht4SW3gJbWBl9QGXlIbeElt4CW1gZfUBl5SG3hJbeAltYGX1AZeUht4SW3gJbWBl9QGXlIbeElt4CW1gZfUBl5SG3hJbeAltYGX1AZeUht4SW3gJbWBl9QGXlIbeElt4CW1gZfUBl5SG3hJbeAltU2FN//9MLHSidM9HoKXibUPnP2eFGx0JlY6cPZ7UrDRmVjpwNnvScFGZ2KFAx/fNs318ZdvHord00gKNjoT6xu4ubrerl/d7n+9/qHkPY2lYKMzsb6B691D7fNN99B7/6HkPZ3X0KKL03HyZe2j767nz7dnA7JBFVev6HQq292+hAEuvP8UOyW86nZ0Nx/fNa9sv+CloebCa3/V6vWX/fLxx9vt5tOXgPmJgVdld/1+6YqZkwPvqv9ou/loPfSCl86qCO/hcbcLvOSqHrztvoJpvWP8+H7C47zgVdbdebPivd8/d7veHyZbNY31MAxesqoNb9L8xMCrLPBONZ3y9XPXMN4YwuClKQLvxNMpX+CdeDrlaFCtzbbra5fnaPBS2cA7y3TKEXhnmU5JSV4H1R7YgpdqCLxzTqekwDvndIprWO3Ibq7Vr12uOwIv5Q68FUynuKrB+7MYeGm4KK+WWvDSTIG3gukUF3grmE6heR4JG/EqNHx34KV8gTcg8NYVeAMCbyWN7OXGePU0DF7KEHjDA28lgTc88FaSxDbM6++uhHsFL2UIvOGBt5LAGx54Z29YbQJUT8LgpaTAGxt4Zw+8sYF39gS22aSCl4qmHG/vOmzPN5zidGHpxtu/Dtv9D+3/AuYnBt7Z0423dx229pT+j3/jgiqLyHk0d1jgN1eehl145c/RnV7KylyHrYXLNSkWkl68J19mrsMG3gV1KXhfrsMG3uXk69UpNb4ceF+uwwbeBXUZeI/XYeMJ24K6CLy967BxqGxBWV4LCi2Kt38dts0VL1IspYvA6xiQuInmnE5jgTcx8M6RtbNr4X1KzZdttyLgpdDAmyXwzhF4swTeSZNeTcuL15dytz7gJe/AK7VumvZVOnth3hxsL2KmU6bAK9S+zrF+/cVeHF7xsBcR0ylXFlvrBTSJ3l9deSVb61MF3jbznojjwrzWbC9ip1OOwDuQeVflcWHe5WMvYqdTjsAr9vh2/860/mIUb3P6dngqmvCZdgnvX66SCVtr1YwzmO6Rd909HTsueOStqErxjq9084vYFPu84K0o8I7GE7aaEw6SReFNICysVRV4232Fx/cP9oJDZRUF3uFWzf4VCHth3hxsL2KmU3LgzR94S2d9Rnj4RTXL5ncr8M4yncBbMPCWDrzFAm/pwvB+F0re9R1eOfDSWOAtFnhLB95igbd0nnifLMOegZeKBt5igbd04C0WeItl3j/oxBvzCpsvXtc6gpfEwAtetYEXvGpz4vX9GBB4Z5m+6BaD9+Vd4u0l2bpPUHrOTwy8xVoK3s3V4Z2264nfLg7eAnVXK5sA7zBhzzV14f0qZn3Xqvnp8MjbnmA6aH5i4C3QxePtf+L4t4fDbsPz59NPSIJXXxeP1/6qA97Nx3fNK9sveNXlxCt8DEh6uc3TcC1427OMbT5xNSDdLRRvG9dh0x54PecnBt6cWddGz4bXRThGrSkr3sMZF/znJwbenC0Yb3uYzJxxwX9+YuDN2TLxxs9PDLx5ktiCF7wqAm/M/MTAmyfwxsxPDLyJ/SxkqS2JN4FtF3gXHXgT5icG3sTAmzA/MfBG9899zp1d8BYLvNGBN3l+YuCNDrzJ8xMDb3jDu7kSW+vHbrPNhDfhjwLepQXeXPMTA294C8L7qxh4Nea7g3uuVtzbjcebvLNrAu9yAi941QZe8Ooryqug1sL7TSgMb/KfC7wLCLzgVRt4waui4R1bp1f5Z93zGrOzC955pqsMvMebwass8B5vBm/NSa+W9dk692k9oY6wjcGb648PXs2Bd/Rm8NYceEdvBu/83Z03smcrsI3xKh0JC/MqsQXvVNNrCbwDgbf+wDsQeCvJKTAsYf/W9901UUT91GZj2wXeSgJveFnwvpyf9/mGs0RGBt7wcuA9Xsrq/of2fwHzE7sIvJ70nMk/qrOG1WaGOj9e+Uif9V3HS1m1Z0XvnyXdPT8x8IJ35GYPvMdLWbVLTusfGnhji8Tbvw5b72pA4A1p2GuYQAmi/HPzYusLMagiGzDDIy94IwNvYuCdL/AmlhUvT9g8c3l1apPodUrMb4a/ejKvyvByqMwz8GYpH972UlabK16k8Am8WcqCN35+YlrxWl6dRGOOUFlf5qn2e0zzsO0C7xyBN0vgnSPwZqkOvOumeXX7snh82zTXL+/ysRcx0yvK2sG1vIbZHOY2TNjp9X/DJXguuDWrwPv442170W2z2Fxdb9c7xObQhb2ImF5T4M1ZFXjbzIsbu8X6zcPucfbaHDS2F7HTawm8OasG72pH9rjYPfqal+vsxcvYk3dXaMnazTU7oX4oA/N0P+I1WXL5rdmMM5gK7+Pbdmf3sNgbHsUbNr2ewJuzah55193TsW6x2v0/eMHrqBq8x33end39MYcLxmvt5lo/8ShNEbLMHf3pWcz9ld+aNeJd7R99L/IJG3hzVgXedl/h8f2DWbRHzNou8VAZeHPmwiu94vPtW+5H3lWzfwWiW9zvn0BeH97lYy9ipldRd4zs9/7errT36avJj9mwWvvu/jgvgfBk27QOvLGBF7wjN4M3U+DNH3gnynpRzXqtS8ArYBILkmzneUeeU8EbHnjBO3IzeDMF3vyBd6KG8fYx/RmGN0abdBf/7ec5VfobMfE2Be9EgTd/4J0o8OYPvBPVf2ntm/XS2rApCVgMXilBbRjhOdWawDtR4M0feCcKvPkDb+mG38Jr74QKeIdpDTvzVOt7D+AtFnjBO3IzeFMDb7GmxLu5as7ekZuWOrzWJ3gtvH8IJbO1D2RZd5T8F2NWtl3TPvKumqb5ELOaXtPrDLzFmny3Iatf8IJ35GYPvL0TMbUnaupOvDAyv+V7/qGIqBTh7Tac9cmfBLzSVw+ztW5ZEF7pnCtPT9Z39T5dtnZ+ymy9/4TP841NPDbwgnfkZjfe/ud67892CKz5u2ds5oF5neehF7zgHbl5AG/vLDu9Myo8fz49scLJ0YZXZ7enBV7wjtzsfuTt4d18fNec+OQ4r+fH1jzVSmyH1ZbEO/d23WbG255xYfOJqwFZgbdYWfG2cR22k8BbrLxP2LbgPWapld5INjVe37tYEN7eoTJzvqaA+YmBF7wjN3vgNSdiag+Trc5efgAveIuVAW/K/MQU4bVOvDu8KzosS1DrxPtn2F144p17w74E3mKBt3TgLRZ4SwfeAgkfc3+aCq+Uc/Z/9oE3bH5i4AXvyM3gjQi80wTeAgkfc/fFG8Y2JukehrO+de7tehp4CwTeaQJvgcA7TeDN2df+yfutY2TWO3Ls19mE/dIyxav9o7KdXRN4cwbeSXPh/UsMvHLgnTTw5umXfRJeaZ+3PN4gqG68c29eOfDmCbwzBN48gXeGwJvYL/0MXuehsqrxWnNqe1HNCryJgXe+wJsYeOcLvNHd7RvGK30M6K++4TC8w2+1SZc8/K1zbmBn4I0OvHMH3ujAO3fgDe+u3wR4E9jGV/XOrgm84YG3ksAbHngrCbwh3Z1ns70EvArUmsAbEnirCrwhgbeqwBuSc29XwGt9iDgK71RZf0km3rJRgTck8FYVeEMCb1VlwNu7Dlvvl37zE5sM789dLry/9rPxWp8Jqgbvn0JTbdP0XHi/i1nf1bsOW++XfvMTAy94R2524+2d1v/kDP8e8xMDL3hHbh7AK1+H7eTaKh7zE5sMb9DObhRe3yNhYV8dxnYheHtfAl7wzhR4vQJvjYHXK88X1SS2nq+wReFNIKxarYknbF6Bt8bqOFS2bvbXLDaL7iH8cNDYXgStfb7AW2MZ8Pauw2Z+6T+/q71m8fr1F7Nox+wHdn8T7EXQ2mfoTmDrVPutn3WGQglvGOFktoJacxWW4hszdxnwpsw/9nLh+NvtqvnJ7DzvHoHtRez06MBbcdXgXb15OCx+e2iZmmd/9iJ2enTgrbhK8D6+3e/smsXWibfpv0ySuTsh6ejY8P6toHbkpCOeeCV0yXj/p5RtVzPOYLpH3nW3s9wtZn3kBa+WKnnktfZ5wQter+rFO+UTNsmroNZ++40nW+u9pGF4Ja/gPVYF3nZf4fH9g1lszXHeCQ+VgVdlVeDdrpr98WGzMHjNQWN7ETPdHXhVVgfe2NKnO7167uYOe3WyFfD6FuPVZgve+PmJgRe8IzcLm3kXeMFbQYvFKxGVvLpeRxv2Kv+jFYLXU3eCWrM++X4ikwZe8II3bn5i4AXvyM2Lwvv1vF8FttZurlvqoNeoPPEOe7XY5vtRzBF4was28IJXbQvEKxCV8tzNLSJUcmb9p+Ed4BG1wl+p3D+QaQMveNUGXvCqbUl4w7wKr6ZJ5yktytaV02uXoPZ792co9HOZKPCCV23gBa/aFoHXE6qU9PabKLyeznI17FWq6A+pXOAFL3jj5icG3qHAeyl4PaGKbF14PaGOlMumJ9cnoaI/pHKBF7zgjZufGHjBO3KzJ97eCUgf3zZNd94xj/mJOacnq50AryfhKKnDXpeAV97SZ9/VO6vC2jq7AnjBW6w8ePvns2nP0+s9PzHwgnfkZj+8vTOJPX+u4poU6V4FtU9F8MawjYL6bbCiP6RyReI9ObNkD+/m4ztzbn6f+YmBF7wjNwc/8rbn5t98ejkxE3jBW6x0vKum+eHkBKT9s0BnX2Nr9YT/liBVYmvhtZgk43WqlfC6vA4LdVb0R1Wi/E/YtuAF7zRlP1R2PE+pz/zEwAvekZs98fYuZ/VynlKf+YlZ0xOghuG1MIXh9fXqUuv0GvMnLvqjKlEmvLHzEwMveEduBi94q+2C8CZAHVYbhTe57zFshT9K1J5/0Z9Y1sALXvDGzU8MvOAduVkF3oJsLSs23pJeY9SOSA1KD2Hwghe8cfMTAy94R25eBl5pN7c8XsmroNbJ1qLnPLNK2Keni/74UgMveMEbNz8x8IJ35Gb5Qh0XgHfYqy/eBMK+bPt4BbW/W3g7lJ5nfA+UXPSnGB14wQveuPmJgRe8IzdfIF5Ptp54wwzHqB3e2f29r/brMF5PyeoIgxe84I2bnxh4wTty83LxPglZtMIID7MV8D452Q7iHdlayYaL/iwjAi94wRs3PzHwgnfk5gXildR64o3KtbM78qJaru0YtgOc616TAy94wRs3PzHw5gm8MfMTa8LYxuMVgKXjlYa61JpKblTwes5PDLwFAq/n/MTAWyDwes5PbIF4i27P88BbLPCWDrzFAm/pwFusIu/n9cWbIDlIranohnSlE+9/xYTvejm3dO+SbO75iYF3oi4b7+bqILZ3STb3/MTAO1EXjXfV/GQeeU/O8A9e8BYrE97fHg5gT66tMgnebpuWxOtr2OVZ+jrhfipiW3OReE+uw7Y97vOCF7xTlf0JWxTedbO/8KBZmKd84kJce/Aus3S87XXYtml42wsPrl9/MYvDUz5xIa69cCwywfAI3gjC7obZ+my7JZf9kTf2CdvL1V9vzQRxIa89eJdZ/uO8kYfKVm8ezMI8dosLee3Bu8zy4m2vw2YuyeY3/+W73+4vtr1f+OBtrKeM0muYQYYDd30zsZYmoDagphGOHPRu9sY7NN/3C9ed+HbXN8cjL3gXULZH3rj5x477vOAFr18V4g1/wtaVTDju8FmM60G17OyGVAVec7HtwzW3gw+VdYF3aVWB93CxbbMwT/nExch08C6tOvDG5ok3jPIw4RHJCcZhGxt4was28IJXbQvE60fYV7Jvw15RGxt4was2F97/iIEXvBV0QXhNYYaDJOejDNscgRe8agMveNV2eXi7YggHSk6WXnTTLCHwgldt4AWv2i4VrynBcBHQpqIbZTmBF7xqAy941XbheK1ySY7SXWgLLDrwgldt4AWv2paE1zQV4dx/WDoNvOBVG3jBq7YF4hVK8JppDSgi8LaBV2XgbQOvypTjpUUXp8OfVyLP+e6HiZVOnIoUeJkI3hnuh4mVTgQvE9VOBC8T1U4ELxPVTgQvE9VOvDy8RNkDL6kNvKQ28JLawEtqAy+pDbykNvCS2sBLatOCt72u8Xr/VuUP28e3zZuH7fb5Zn/NTXuRNHG3aJcpE9sZr24HVi7HxIzraH6XuI4zpgTv5sps0fXrL5urD9uV37WPAyeuuwEpEzdX19vVbul/febAiRnX0WyDtHWcMx14V81P3RXl2+3ePlwMXXw+aeL2/sP+v6RMHFu5HBMzrqP5Xdo6zpoOvL89mA262v2Laba9uEia+Pz55d/S6InPN9fb9ZuHjOtoT8y4juZ3aes4azrwmr2z/Wbv/tVrrlM3+vnEzcd37b5g2sTdPmOuv2DSxIzraH4H3uJ11Mz/v23+fpMJrzXxx9vt5tOXpIn73efXXzLiPZmYbx234J2oDtnq8FQi16OaNVEcHDhxTG2OiRnXcWyNAybOmC683bOV7repTzTOJ7aLsydbgRNzPmGTJmZcx+3LrjNP2Mpm9tV2O6jdcYHkw1DCxPXun9LH9w9JE59vPuQ7VCZMzLmOZhtwqKx0+81s/j1b7w/T73bdmu5gZX+RNHHVpE80LwCIK5djYsZ1PGyDtHWcMS14ic4CL6kNvKQ28JLawEtqAy+pDbykNvCS2sBLagMvqQ28pDbwktrAS2oDL6kNvKQ28JLawEtqAy+pDbykNvCWavW6O0MCFQu8pdp/Rrc7MQ2VCbzFWr/+l5azdygNvOW6b7ScAEFp4C3XurmeexUuO/AW6/nmH2pO36Ez8BZr9ebfNxxsKBl4S9We9HfNQ2/JwFuq+/1lT3jKVjDwktrAS2oDL6kNvKQ28JLawEtqAy+pDbykNvCS2sBLagMvqQ28pDbwktrAS2oDL6kNvKS2/wOxzk+Cwzl3igAAAABJRU5ErkJggg==" alt="" />
地理探测器,基于异质性,R语言插值
thead>tr>th {
border: none;
border-bottom: 2px solid #dddddd;
}
.kable-table table>thead {
background-color: #fff;
}
-->
R语言:克里金插值的更多相关文章
- Cesium专栏-克里金插值(全国温度为例,附源码下载)
Cesium Cesium 是一款面向三维地球和地图的,世界级的JavaScript开源产品.它提供了基于JavaScript语言的开发包,方便用户快速搭建一款零插件的虚拟地球Web应用,并在性能,精 ...
- arcgis api for js实现克里金插值渲染图--不依赖GP服务
本篇的亮点是利用kriging.js结合arcgis api for js,实现克里金插值渲染图,截图如下: 具体实现的思路如下: 1.kriging.js开源js,可以实现针对容器canvas克里金 ...
- arcgis api 3.x for js 实现克里金插值渲染图不依赖 GP 服务(附源码下载)
前言 关于本篇功能实现用到的 api 涉及类看不懂的,请参照 esri 官网的 arcgis api 3.x for js:esri 官网 api,里面详细的介绍 arcgis api 3.x 各个类 ...
- openlayers4 入门开发系列之前端动态渲染克里金插值 kriging 篇(附源码下载)
前言 openlayers4 官网的 api 文档介绍地址 openlayers4 api,里面详细的介绍 openlayers4 各个类的介绍,还有就是在线例子:openlayers4 官网在线例子 ...
- leaflet 实现克里金插值功能(附源码下载)
前言 leaflet 入门开发系列环境知识点了解: leaflet api文档介绍,详细介绍 leaflet 每个类的函数以及属性等等 leaflet 在线例子 leaflet 插件,leaflet ...
- 克里金插值 调用matlab工具箱
克里金插值 克里金插值是依据协方差函数对随机过程或随机场进行空间建模和插值的回归算法. 克里金插值法的公式为: 式中为待插入的各点的重金属污染值,为已知点的重金属污染值,为每个点的权重值. 用BLUP ...
- ArcGIS JS API多线程克里金插值
最近做关于雨量插值的项目,本来使用后台的GP工具做的,但是处理时间比较长需要十几秒钟左右,所以研究怎么通过前台来计算. 参考下克里金例子,思路是生成要计算区域的100乘以100网格,然 ...
- PIE SDK克里金插值法
1.算法功能简介 克里金插值法基于一般最小二乘法的随机插值技术没用方差图作为权重函数,被应用于任何点数据估计其在地表上分布的现象,被称为空间自协方差最佳插值法,是一种最优内插法也是一种最常用的空间插值 ...
- R 语言赋值运算符:`<-` , `=`, `<<-`
<- 与 = 间的区别 <- 与 = 在大部分情况下是应该可以通用的.并且,相对于 <<- 运算符,它们的赋值行为均在它们自身的环境层(environment hierarch ...
随机推荐
- 【quickhybrid】Android端的项目实现
前言 前文中就有提到,Hybrid模式的核心就是在原生,而本文就以此项目的Android部分为例介绍Android部分的实现. 提示,由于各种各样的原因,本项目中的Android容器确保核心交互以及部 ...
- CF 1064B Equations of Mathematical Magic(思维规律)
Description Colossal! — exclaimed Hawk-nose. — A programmer! That's exactly what we are looking for. ...
- JS页面出现Uncaught SyntaxError: Unexpected token < 错误
action中的查询方法的返回值应该为NONE;
- Scrum Meeting 11.07
成员 今日任务 明日计划 用时 徐越 赵庶宏 薄霖 卞忠昊 JOSN数据解析 WebView和JavaScript交互基础 3h 武鑫 设计界面:独立完成一些简 ...
- c# combobox向上展开
1.问题情境:实际中的下拉框默认向下扩展,如果屏幕下方空间不足,会向上扩展. 向下扩展情况下,有时候会超出form窗体. 2.解决办法: 寻找相关属性无果. 退而求其次,重画item的框.发现Draw ...
- 冲刺One之站立会议5 /2015-5-18
2015-5-18 服务器部分大体已经完工,现在我们主要是在把登陆界面和服务器组装起来,这个过程是很让人头痛的,以为其中涉及到了很多网络协议.网络编程的知识,由于之前我们没有接触过所以实现起来会觉得很 ...
- 第三次作业---excel导入数据库及显示
好吧首先承认这次作业失败了,而且我并不知道原因.另外,我也没有采用PowerDesigner 设计所需要的数据库,代码就用了全部的时间.感觉自己就像一个刚学会爬着走路的小孩去参加一百一十米跨栏,能不能 ...
- Week2-作业一——《构建之法》三章精读之想
Week2-作业一——精读<构建之法> 前言 其实我本人是不经常看书的,电子书倒是看了不少,实体书真的不经常看,但是为了这次作业的需求,我还是选择静下心来阅读一下这本<构建之法> ...
- 浅学JavaScript
JavaScript是互联网上最流行的脚本语言,可广泛用于服务器.PC.笔记本电脑智能手机等设备: 对事件的反应: <!DOCTYPE html> <html> <hea ...
- vue 实战报错解决方案
最近做项目,遇到一个问题 列表滚动,上拉加载功能 采用了better-scroll 插件,将better-scroll 封装成组件,采用父组件传递值给子组件的方式,子组件 采用$emit 方式 通知父 ...