ACF/PACF,残差白噪声的检验问题
关于自相关、偏自相关:
一、自协方差和自相关系数
p阶自回归AR(p)
自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]
自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]
二、平稳时间序列自协方差与自相关系数
1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:
r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]
2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,
所以DX(t)*DX(t+k)=σ2*σ2,
所以[DX(t)*DX(t+k)]^0.5=σ2
而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2
简而言之,r(0)就是自己与自己的协方差,就是方差,
所以,平稳时间序列延迟k的自相关系数ACF等于:
p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)
3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。
三、偏相关系数
对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响。
为了能单纯测度x(t-k)对x(t)的影响,引进偏自相关系数的概念。
对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。用数学语言描述就是:
p[(x(t),x(t-k)]|(x(t-1),……,x(t-k+1)={E[(x(t)-Ex(t)][x(t-k)-Ex(t-k)]}/E{[x(t-k)-Ex(t-k)]^2}
这就是滞后k偏自相关系数的定义。
1.什么是白噪声? 2.为什么残差要是白噪声? 3.怎样对白噪声进行检验? 4.如何对Q统计量做理解? |
ACF/PACF,残差白噪声的检验问题的更多相关文章
- 第二章平稳时间序列模型——ACF和PACF和样本ACF/PACF
自相关函数/自相关曲线ACF AR(1)模型的ACF: 模型为: 当其满足平稳的必要条件|a1|<1时(所以说,自相关系数是在平稳条件下求得的): y(t)和y(t-s)的 ...
- R语言绘图:时间序列分析 ggplot2绘制ACF PACF
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = " ...
- R语言_格兰因果检验
#当前文件路径 getwd() #设置当前路径,注意转译 setwd("C://Users//Administrator//Desktop//R_test") #导入数据 data ...
- R语言--时间序列分析步骤
大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob) d=1阶差分 s4_df1=d ...
- ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...
- 《时间序列分析——基于R》王燕,读书笔记
笔记: 一.检验: 1.平稳性检验: 图检验方法: 时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列 自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加 ...
- 自回归模型(AR )
2017/7/2 19:24:15 自回归模型(Autoregressive Model,简称 AR 模型)是最常见的平稳时间序列模型之一.接下将介绍 AR 模型的定义.统计性质.建模过程.预测及应用 ...
- 【转】时间序列分析——基于R,王燕
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法: 时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列 自相关图检验:(ac ...
- 利用ARIMA算法建立短期预测模型
周五福利日活动是电信为回馈老用户而做的活动,其主要回馈老用户的方式是让用户免费领取对应的优惠券,意在提升老用户的忠诚度和活跃度.今日,为保证仓库备货优惠券资源充足,特别是5元话费券等,需要对该类优惠券 ...
随机推荐
- notion笔记
不错的笔记应用, 模式新颖, 正在使用, 如有相同使用者可以入群交流 notion QQ群 725638123
- pssh命令详解
基础命令学习目录首页 原文链接:https://www.cnblogs.com/kevingrace/p/6378719.html pssh提供OpenSSH和相关工具的并行版本.包括pssh,psc ...
- Tomcat之初识初体验
1.what's this? Stable performance, free Java web application server! 相关: Java,Javac,JVM,JRE,JDK,Java ...
- 感谢Thunder团队
不知不觉中,团队开发的beta版本都已经结束.开发的路上我们一起解决了很多难题,相互帮助走到了现在. 首先我想感谢组长王航.认真负责合理分配任务,使得我们每次发布都可以顺利并且按时完成.感谢胡佑蓉,李 ...
- GIT理解
以前从来没听过GIT,根本不知道是什么东西.老师突然让注册一个GIT帐号,不知道怎么注册, 真有点不知所措了,又听说是全英文的,感觉也是醉了!登录进去看了看,看的似懂非懂,自己 也不敢妄下定论于是上网 ...
- Python开发【第五篇】迭代器、生成器、递归函数、二分法
阅读目录 一.迭代器 1. 迭代的概念 #迭代器即迭代的工具(自定义的函数),那什么是迭代呢? #迭代:指一个重复的过程,每次重复都可以称之为一次迭代,并且每一次重复的结果是下一个迭代的初始值(例如: ...
- 对象字典0x1005和0x1006的理解
SYNC不一定由主站产生,因此,产生SYNC的节点,0x1005对象的值一般是0x40000080,第30位为1表示本节点产生 SYNC,而本节点的0x1006对象就是产生同步周期值了;而接收SYNC ...
- TCP源码—epoll源码及测试
一.epoll_create & epoll_create1 SYSCALL_DEFINE1(epoll_create, int, size) sys_epoll_create->sys ...
- TCP系列53—拥塞控制—16、Destination Metrics和Congestion Manager
一.概述 我们之前介绍过rtt.ssthresh等变量,这些变量一般在TCP连接建立的时候有个初始值,然后随着TCP的数据交互逐渐调整到适应对应的网络状态的值.但是如果每次TCP建立连接都依靠默认初始 ...
- C++ 游戏之点点水果
大二时利用C++编写的点水果小游戏 程序代码总共3个文件,main.cpp Fruit.h Fruit.cpp 代码将在图片下面给出 至于讲解,由于过了一年多的时间,有点忘记了,但我会努力回忆并即时 ...