ACF/PACF,残差白噪声的检验问题
关于自相关、偏自相关:
一、自协方差和自相关系数
p阶自回归AR(p)
自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]
自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]
二、平稳时间序列自协方差与自相关系数
1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:
r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]
2、平稳时间序列的方差相等DX(t)=DX(t+k)=σ2,
所以DX(t)*DX(t+k)=σ2*σ2,
所以[DX(t)*DX(t+k)]^0.5=σ2
而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2
简而言之,r(0)就是自己与自己的协方差,就是方差,
所以,平稳时间序列延迟k的自相关系数ACF等于:
p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)
3、平稳AR(p)的自相关系数具有两个显著特征:一是拖尾性;二是呈负指数衰减。
三、偏相关系数
对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺杂了其他变量对x(t)与x(t-k)的影响。
为了能单纯测度x(t-k)对x(t)的影响,引进偏自相关系数的概念。
对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。用数学语言描述就是:
p[(x(t),x(t-k)]|(x(t-1),……,x(t-k+1)={E[(x(t)-Ex(t)][x(t-k)-Ex(t-k)]}/E{[x(t-k)-Ex(t-k)]^2}
这就是滞后k偏自相关系数的定义。
1.什么是白噪声? 2.为什么残差要是白噪声? 3.怎样对白噪声进行检验? 4.如何对Q统计量做理解? |
ACF/PACF,残差白噪声的检验问题的更多相关文章
- 第二章平稳时间序列模型——ACF和PACF和样本ACF/PACF
自相关函数/自相关曲线ACF AR(1)模型的ACF: 模型为: 当其满足平稳的必要条件|a1|<1时(所以说,自相关系数是在平稳条件下求得的): y(t)和y(t-s)的 ...
- R语言绘图:时间序列分析 ggplot2绘制ACF PACF
R语言真是博大精深 方法一 Acf(gold[,2], type = "correlation",lag.max = 100) Acf(gold[,2], type = " ...
- R语言_格兰因果检验
#当前文件路径 getwd() #设置当前路径,注意转译 setwd("C://Users//Administrator//Desktop//R_test") #导入数据 data ...
- R语言--时间序列分析步骤
大白. (1)根据趋势定差分 plot(lostjob,type="b") 查看图像总体趋势,确定如何差分 df1 = diff(lostjob) d=1阶差分 s4_df1=d ...
- ARIMA模型——本质上是error和t-?时刻数据差分的线性模型!!!如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理!ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻 ...
- 《时间序列分析——基于R》王燕,读书笔记
笔记: 一.检验: 1.平稳性检验: 图检验方法: 时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列 自相关图检验:(acf函数)平稳序列具有短期相关性,即随着延迟期数k的增加 ...
- 自回归模型(AR )
2017/7/2 19:24:15 自回归模型(Autoregressive Model,简称 AR 模型)是最常见的平稳时间序列模型之一.接下将介绍 AR 模型的定义.统计性质.建模过程.预测及应用 ...
- 【转】时间序列分析——基于R,王燕
<时间序列分析——基于R>王燕,读书笔记 笔记: 一.检验: 1.平稳性检验: 图检验方法: 时序图检验:该序列有明显的趋势性或周期性,则不是平稳序列 自相关图检验:(ac ...
- 利用ARIMA算法建立短期预测模型
周五福利日活动是电信为回馈老用户而做的活动,其主要回馈老用户的方式是让用户免费领取对应的优惠券,意在提升老用户的忠诚度和活跃度.今日,为保证仓库备货优惠券资源充足,特别是5元话费券等,需要对该类优惠券 ...
随机推荐
- Erlang运行时中的无锁队列及其在异步线程中的应用
本文首先介绍 Erlang 运行时中需要使用无锁队列的场合,然后介绍无锁队列的基本原理及会遇到的问题,接下来介绍 Erlang 运行时中如何通过“线程进度”机制解决无锁队列的问题,并介绍 Erlang ...
- Appengine直接下载文件并保存到google drive
一直对下载文件比较感兴趣.前些日子无意搜到google 推出一项服务,可以直接将文件下载到google drive中,原型猛戳这里,但有限额限制.一时脑洞大开,可不可以在appengine 上架设服务 ...
- JDK8 metaspace调优
从JDK8开始,永久代(PermGen)的概念被废弃掉了,取而代之的是一个称为Metaspace的存储空间.Metaspace使用的是本地内存,而不是堆内存,也就是说在默认情况下Metaspace的大 ...
- mac 上面安装 tree 命令
相信很多使用过Linux的用户都用过tree命令,它可以像windows的文件管理器一样清楚明了的显示目录结构. 但是mac下默认是没有 tree命令的. 1.我们可以使用find命令模拟出tree命 ...
- mybatis批量插入oracle
<insert id="batchInsert" parameterType="java.util.List"> INSERT INTO TEST( ...
- java中static使用之静态方法注意点
1.静态方法可以直接调用同类中的静态成员,但是不能直接调用非静态成员,这是为什么呢?大家想一下,静态成员在对象创建之前就要写入内存,所以它在内存中是实实在在的存在的,而非静态还不存在内存中,所以不能调 ...
- Alpha阶段博客链接
博客链接 团队项目启程篇章:http://www.cnblogs.com/liuliudashun/p/5968194.html 团队项目开发篇章1:http://www.cnblogs.com/li ...
- Pygame - Python游戏编程入门(0) 转
博客刚开,想把最近学习的东西记录下来,算是一种笔记.最近打算开始学习Python,因为我感觉Python是一门很有意思的语言,很早以前就想学了(碍于懒),它的功能很强大,你可以用它来做科学运算,或者数 ...
- PHP学习心得2
对于PHP的语法结构,刚开始真的很不习惯,真搞不懂为什么每个变量之前都要加个“$”符号,每个语句写完之后都必须加上“分号”来表示此句已经结束,还有,PHP对字母的大小写是敏感的,写的时候一定要注意大小 ...
- mysql按日期分组统计数据
最近在做一个招聘网时,需要显示一个月内企业招聘信息的发布数量,按日期分组统计,刚开始是直接从源数据库表里面进行group by,但这样子就出现日期不连续的问题了,我想要的效果是,若当天没有数据,则显示 ...