题面

这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=。=

因为后面的项的计算依赖于前面的项,不能直接FFT。所以用CDQ的思想,算出前面然后考虑给后面的贡献

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int a[*N],b[*N],rev[*N],f[N],g[N],n,G,Gi;
void exGCD(int a,int b,int &x,int &y)
{
if(!b) {x=,y=; return ;}
exGCD(b,a%b,y,x),y-=a/b*x;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int Inv(int x,int m)
{
int xx,yy;
exGCD(x,m,xx,yy);
return (xx%m+m)%m;
}
void NTT(int *arr,int len,int typ)
{
for(int i=;i<=len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(int i=;i<=len;i<<=)
{
int lth=i>>,ort=Qpow(~typ?G:Gi,(mod-)/i);
for(int j=;j<len;j+=i)
{
int ori=,tmp;
for(int k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
for(int i=,ni=Inv(len,mod);i<len;i++)
arr[i]=1ll*arr[i]*ni%mod;
}
void CDQ(int l,int r,int mid)
{
int len=r-l+,m=;
for(int i=l;i<=mid;i++) a[i-l]=f[i];
for(int i=;i<len;i++) b[i]=g[i]; len+=mid-l+;
while(m<=len) m<<=;
for(int i=;i<=m;i++) rev[i]=(rev[i>>]>>)+(i&)*(m>>);
NTT(a,m,),NTT(b,m,);
for(int i=;i<=m;i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,m,-);
for(int i=mid+;i<=r;i++) f[i]+=a[i-l],f[i]%=mod;
for(int i=;i<=m;i++) a[i]=b[i]=;
}
void Divide(int l,int r)
{
if(l==r) return;
int mid=(l+r)/;
Divide(l,mid),CDQ(l,r,mid),Divide(mid+,r);
}
int main()
{
scanf("%d",&n);
for(int i=;i<n;i++) scanf("%d",&g[i]);
f[]=,G=,Gi=Inv(G,mod),Divide(,n-);
for(int i=;i<n;i++) printf("%d ",f[i]);
return ;
}

解题:洛谷4721 [模板]分治FFT的更多相关文章

  1. 洛谷.4721.[模板]分治FFT(NTT)

    题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...

  2. 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...

  3. 【洛谷4721】【模板】分治FFT(CDQ分治_NTT)

    题目: 洛谷 4721 分析: 我觉得这个 "分治 FFT " 不能算一种特殊的 FFT ,只是 CDQ 分治里套了个用 FFT (或 NTT)计算的过程,二者是并列关系而不是偏正 ...

  4. 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)

    To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...

  5. 洛谷 4721 【模板】分治 FFT——分治FFT / 多项式求逆

    题目:https://www.luogu.org/problemnew/show/P4721 分治FFT:https://www.cnblogs.com/bztMinamoto/p/9749557.h ...

  6. POJ 1741.Tree and 洛谷 P4178 Tree-树分治(点分治,容斥版) +二分 模板题-区间点对最短距离<=K的点对数量

    POJ 1741. Tree Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 34141   Accepted: 11420 ...

  7. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  8. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  9. [洛谷P3806] [模板] 点分治1

    洛谷 P3806 传送门 这个点分治都不用减掉子树里的了,直接搞就行了. 注意第63行 if(qu[k]>=buf[j]) 不能不写,也不能写成>. 因为这个WA了半天...... 如果m ...

随机推荐

  1. OpenFastPath(2):原生态Linux Socket应用如何移植到OpenFastPath上?

    版本信息: ODP(Open Data Plane): 1.19.0.2 OFP(Open Fast Path): 3.0.0 1.存在的问题 OpenFastPath作为一个开源的用户态TCP/IP ...

  2. Next Generation MSP 和传统MSP的区别

    1. 速度 -- 基础架构代码化快速部署 由于物理硬件已经在云上启动并运行,因此配置服务器要快得多.配置完成后,只有当MSP采用DevOps并将环境“基础设施作为代码”时,配置才能快速.云MSP可以轻 ...

  3. 打包一个传统的ASP.NET web app作为Docker镜像

    (1)针对NerdDinner应用的Dockerfile内容如下 PS E:\DockeronWindows\Chapter02\ch02-nerd-dinner> cat .\Dockerfi ...

  4. Go单元测试注意事项及测试单个方法和整个文件的命令

    Go程序开发过程中免不了要对所写的单个业务方法进行单元测试,Go提供了 "testing" 包可以实现单元测试用例的编写,不过想要正确编写单元测试需要注意以下三点: Go文件名必须 ...

  5. 查看linux端口对应的进程id

    例如:查看占用4040端口的进程 ss -lptn 'sport = :4040'

  6. mysql/mybatis之合并两个表的查询结果

    下面这段sql是把两个表中各自符合条件的count值相加,返回结果是两个之和 SELECT sum(result) FROM ( SELECT COUNT(*) result FROM TEST_A ...

  7. iOS自学-UILabel常见属性

    #import "ViewController.h" #import <CoreText/CoreText.h> @interface ViewController ( ...

  8. 乱码之UTF-8 &GBK

    在提交JSP时对于乱码问题,首先我们要搞清楚为什么会出现乱码? 看JSP的头文件:<%@ page contentType="text/html;charset=UTF-8" ...

  9. unique STL讲解和模板

    unique()是C++标准库函数里面的函数,其功能是去除相邻的重复元素(只保留一个),所以使用前需要对数组进行排序. 代码: #include<bits/stdc++.h> using ...

  10. 车牌识别算法库EasyPR的使用

    主要参考以下两个博客: http://blog.csdn.net/junmuzi/article/details/49888123 http://blog.csdn.net/Lucas66666/ar ...