Java并发(十七):ConcurrentHashMap
先做总结:
1、HashMap HashTable ConcurrentHashMap
HashMap:线程不安全
HashTable:线程安全,每个方法都加了 synchronized 修饰。类似 Collections.synchronizedMap(hashMap)
对读写加锁,独占式,一个线程在读时其他线程必须等待,吞吐量较低,性能较为低下。
ConcurrentHashMap:利用CAS+Synchronized来保证并发的安全性。数据结构同HashMap。
2、ConcurrentHashMap如何实现线程安全?
(1)get()方法使用tabAt(Node<K, V>[], int)方法
调用Unsafe的native方法 getObjectVolatile(Object obj, long offset);
// 获取obj对象中offset偏移地址对应的object型field的值,支持volatile load语义,即:让缓存中的数据失效,重新从主内存加载数据
(2)put()方法
①需要获取数组上的Node时同样使用tabAt()方法
②设置数组上Node是使用casTabAt() 方法,
casTabAt()调用Unsafe的native方法compareAndSwapObject(),CAS操作
③哈希冲突之后,需要操作改hash值对应的链表/红黑树,此时synchronized(该链表第一个Node)
保证线程安全的基础上,减小了锁的粒度。
3、线程安全的容器只能保证自身的数据不被破坏,但无法保证业务的行为是否正确。
public static void demo1() {
final Map<String, Integer> count = new ConcurrentHashMap<>();
final CountDownLatch endLatch = new CountDownLatch(2);
Runnable task = new Runnable() {
@Override
public void run() {
for (int i = 0; i < 5; i++) {
Integer value = count.get("a");
if (null == value) {
count.put("a", 1);
} else {
count.put("a", value + 1);
}
}
endLatch.countDown();
}
};
new Thread(task).start();
new Thread(task).start(); try {
endLatch.await();
System.out.println(count);
} catch (Exception e) {
e.printStackTrace();
}
}
demo1是两个线程操作ConcurrentHashMap,意图将value变为10。但是,因为多个线程用相同的key调用时,很可能会覆盖相互的结果,造成记录的次数比实际出现的次数少。
当然可以用锁解决这个问题,但是也可以使用ConcurrentMap定义的方法:
V putIfAbsent(K key, V value)
如果key对应的value不存在,则put进去,返回null。否则不put,返回已存在的value。 boolean remove(Object key, Object value)
如果key对应的值是value,则移除K-V,返回true。否则不移除,返回false。 boolean replace(K key, V oldValue, V newValue)
如果key对应的当前值是oldValue,则替换为newValue,返回true。否则不替换,返回false。
修改:
public static void demo1() {
final Map<String, Integer> count = new ConcurrentHashMap<>();
final CountDownLatch endLatch = new CountDownLatch(2);
Runnable task = new Runnable() {
@Override
public void run() {
Integer oldValue, newValue;
for (int i = 0; i < 5; i++) {
while (true) {
oldValue = count.get("a");
if (null == oldValue) {
newValue = 1;
if (count.putIfAbsent("a", newValue) == null) {
break;
}
} else {
newValue = oldValue + 1;
if (count.replace("a", oldValue, newValue)) {
break;
}
}
}
}
endLatch.countDown();
}
};
new Thread(task).start();
new Thread(task).start(); try {
endLatch.await();
System.out.println(count);
} catch (Exception e) {
e.printStackTrace();
}
}
由于ConcurrentMap中不能保存value为null的值,所以需要处理不存在和已存在两种情况,不过可以使用AtomicInteger来替代。
public static void demo1() {
final Map<String, AtomicInteger> count = new ConcurrentHashMap<>();
final CountDownLatch endLatch = new CountDownLatch(2);
Runnable task = new Runnable() {
@Override
public void run() {
AtomicInteger oldValue;
for (int i = 0; i < 5; i++) {
oldValue = count.get("a");
if (null == oldValue) {
AtomicInteger zeroValue = new AtomicInteger(0);
oldValue = count.putIfAbsent("a", zeroValue);
if (null == oldValue) {
oldValue = zeroValue;
}
}
oldValue.incrementAndGet();
}
endLatch.countDown();
}
};
new Thread(task).start();
new Thread(task).start(); try {
endLatch.await();
System.out.println(count);
} catch (Exception e) {
e.printStackTrace();
}
}
一、属性
// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30; // 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16; //
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; //
private static final int DEFAULT_CONCURRENCY_LEVEL = 16; //
private static final float LOAD_FACTOR = 0.75f; // 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8; //树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6; //
static final int MIN_TREEIFY_CAPACITY = 64; //
private static final int MIN_TRANSFER_STRIDE = 16; //
private static int RESIZE_STAMP_BITS = 16; // 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1; // 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS; // forwarding nodes的hash值
static final int MOVED = -1; // 树根节点的hash值
static final int TREEBIN = -2; // ReservationNode的hash值
static final int RESERVED = -3; // 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
几个很重要的概念:
(1)table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
(2)nextTable:扩容时新生成的数据,数组为table的两倍;
(3)Node:节点,保存key-value的数据结构;
(4)ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
(5)sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同的地方有不同的用途,其值也不同,所代表的含义也不同
- 负数代表正在进行初始化或扩容操作
- -1代表正在初始化
- -N 表示有N-1个线程正在进行扩容操作
- 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小
二、构造
public ConcurrentHashMap() {
} public ConcurrentHashMap(int initialCapacity) {
if (initialCapacity < 0)
throw new IllegalArgumentException();
int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
MAXIMUM_CAPACITY :
tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
this.sizeCtl = cap;
} public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
this.sizeCtl = DEFAULT_CAPACITY;
putAll(m);
} public ConcurrentHashMap(int initialCapacity, float loadFactor) {
this(initialCapacity, loadFactor, 1);
} public ConcurrentHashMap(int initialCapacity,
float loadFactor, int concurrencyLevel) {
if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
throw new IllegalArgumentException();
if (initialCapacity < concurrencyLevel) // Use at least as many bins
initialCapacity = concurrencyLevel; // as estimated threads
long size = (long)(1.0 + (long)initialCapacity / loadFactor);
int cap = (size >= (long)MAXIMUM_CAPACITY) ?
MAXIMUM_CAPACITY : tableSizeFor((int)size);
this.sizeCtl = cap;
}
初始化: initTable()
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
while ((tab = table) == null || tab.length == 0) {
// 初始化的"功劳"被其他线程"抢去"了
if ((sc = sizeCtl) < 0)
Thread.yield(); // lost initialization race; just spin
// CAS 一下,将 sizeCtl 设置为 -1,代表抢到了锁
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if ((tab = table) == null || tab.length == 0) {
// DEFAULT_CAPACITY 默认初始容量是 16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
// 初始化数组,长度为 16 或初始化时提供的长度
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
// 将这个数组赋值给 table,table 是 volatile 的
table = tab = nt;
// 如果 n 为 16 的话,那么这里 sc = 12
// 其实就是 0.75 * n
sc = n - (n >>> 2);
}
} finally {
// 设置 sizeCtl 为 sc,我们就当是 12 吧
sizeCtl = sc;
}
break;
}
}
return tab;
}
三、put()
public V put(K key, V value) {
return putVal(key, value, false);
} final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
// 得到 hash 值
int hash = spread(key.hashCode());
// 用于记录相应链表的长度
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
// 如果数组"空",进行数组初始化
if (tab == null || (n = tab.length) == 0)
// 初始化数组,后面会详细介绍
tab = initTable(); // 找该 hash 值对应的数组下标,得到第一个节点 f
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 如果数组该位置为空,
// 用一次 CAS 操作将这个新值放入其中即可,这个 put 操作差不多就结束了,可以拉到最后面了
// 如果 CAS 失败,那就是有并发操作,进到下一个循环就好了
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
// hash 居然可以等于 MOVED,这个需要到后面才能看明白,不过从名字上也能猜到,肯定是因为在扩容
else if ((fh = f.hash) == MOVED)
// 帮助数据迁移,这个等到看完数据迁移部分的介绍后,再理解这个就很简单了
tab = helpTransfer(tab, f); else { // 到这里就是说,f 是该位置的头结点,而且不为空 V oldVal = null;
// 获取数组该位置的头结点的监视器锁
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { // 头结点的 hash 值大于 0,说明是链表
// 用于累加,记录链表的长度
binCount = 1;
// 遍历链表
for (Node<K,V> e = f;; ++binCount) {
K ek;
// 如果发现了"相等"的 key,判断是否要进行值覆盖,然后也就可以 break 了
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 到了链表的最末端,将这个新值放到链表的最后面
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) { // 红黑树
Node<K,V> p;
binCount = 2;
// 调用红黑树的插值方法插入新节点
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
} if (binCount != 0) {
// 判断是否要将链表转换为红黑树,临界值和 HashMap 一样,也是 8
if (binCount >= TREEIFY_THRESHOLD)
// 这个方法和 HashMap 中稍微有一点点不同,那就是它不是一定会进行红黑树转换,
// 如果当前数组的长度小于 64,那么会选择进行数组扩容,而不是转换为红黑树
// 具体源码我们就不看了,扩容部分后面说
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//
addCount(1L, binCount);
return null;
}
按照上面的源码,我们可以确定put整个流程如下:
- 判空;ConcurrentHashMap的key、value都不允许为null
- 计算hash。利用方法计算hash值。
- 遍历table,进行节点插入操作,过程如下:
- 如果table为空,则表示ConcurrentHashMap还没有初始化,则进行初始化操作:initTable()
- 根据hash值获取节点的位置i,若该位置为空,则直接插入,这个过程是不需要加锁的。计算f位置:i=(n – 1) & hash
- 如果检测到fh = f.hash == -1,则f是ForwardingNode节点,表示有其他线程正在进行扩容操作,则帮助线程一起进行扩容操作
- 如果f.hash >= 0 表示是链表结构,则遍历链表,如果存在当前key节点则替换value,否则插入到链表尾部。如果f是TreeBin类型节点,则按照红黑树的方法更新或者增加节点
- 若链表长度 > TREEIFY_THRESHOLD(默认是8),则将链表转换为红黑树结构
- 调用addCount方法,ConcurrentHashMap的size + 1
这里整个put操作已经完成。
四、get()
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
// 计算hash
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 搜索到的节点key与传入的key相同且不为null,直接返回这个节点
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
// 树
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 链表,遍历
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get操作:
- 计算hash值
- 判断table是否为空,如果为空,直接返回null
- 根据hash值获取table中的Node节点(tabAt(tab, (n – 1) & h)),然后根据链表或者树形方式找到相对应的节点,返回其value值。
五、扩容
// 首先要说明的是,方法参数 size 传进来的时候就已经翻了倍了
private final void tryPresize(int size) {
// c:size 的 1.5 倍,再加 1,再往上取最近的 2 的 n 次方。
int c = (size >= (MAXIMUM_CAPACITY >>> 1)) ? MAXIMUM_CAPACITY :
tableSizeFor(size + (size >>> 1) + 1);
int sc;
while ((sc = sizeCtl) >= 0) {
Node<K,V>[] tab = table; int n; // 这个 if 分支和之前说的初始化数组的代码基本上是一样的,在这里,我们可以不用管这块代码
if (tab == null || (n = tab.length) == 0) {
n = (sc > c) ? sc : c;
if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
if (table == tab) {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = nt;
sc = n - (n >>> 2); // 0.75 * n
}
} finally {
sizeCtl = sc;
}
}
}
else if (c <= sc || n >= MAXIMUM_CAPACITY)
break;
else if (tab == table) {
// 我没看懂 rs 的真正含义是什么,不过也关系不大
int rs = resizeStamp(n); if (sc < 0) {
Node<K,V>[] nt;
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
// 2. 用 CAS 将 sizeCtl 加 1,然后执行 transfer 方法
// 此时 nextTab 不为 null
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
// 1. 将 sizeCtl 设置为 (rs << RESIZE_STAMP_SHIFT) + 2)
// 我是没看懂这个值真正的意义是什么?不过可以计算出来的是,结果是一个比较大的负数
// 调用 transfer 方法,此时 nextTab 参数为 null
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
}
}
}
这个方法的核心在于 sizeCtl 值的操作,首先将其设置为一个负数,然后执行 transfer(tab, null),再下一个循环将 sizeCtl 加 1,并执行 transfer(tab, nt),之后可能是继续 sizeCtl 加 1,并执行 transfer(tab, nt)。
所以,可能的操作就是执行 1 次 transfer(tab, null) + 多次 transfer(tab, nt),这里怎么结束循环的需要看完 transfer 源码才清楚。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride; // stride 在单核下直接等于 n,多核模式下为 (n>>>3)/NCPU,最小值是 16
// stride 可以理解为”步长“,有 n 个位置是需要进行迁移的,
// 将这 n 个任务分为多个任务包,每个任务包有 stride 个任务
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range // 如果 nextTab 为 null,先进行一次初始化
// 前面我们说了,外围会保证第一个发起迁移的线程调用此方法时,参数 nextTab 为 null
// 之后参与迁移的线程调用此方法时,nextTab 不会为 null
if (nextTab == null) {
try {
// 容量翻倍
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
// nextTable 是 ConcurrentHashMap 中的属性
nextTable = nextTab;
// transferIndex 也是 ConcurrentHashMap 的属性,用于控制迁移的位置
transferIndex = n;
} int nextn = nextTab.length; // ForwardingNode 翻译过来就是正在被迁移的 Node
// 这个构造方法会生成一个Node,key、value 和 next 都为 null,关键是 hash 为 MOVED
// 后面我们会看到,原数组中位置 i 处的节点完成迁移工作后,
// 就会将位置 i 处设置为这个 ForwardingNode,用来告诉其他线程该位置已经处理过了
// 所以它其实相当于是一个标志。
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab); // advance 指的是做完了一个位置的迁移工作,可以准备做下一个位置的了
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab /*
* 下面这个 for 循环,最难理解的在前面,而要看懂它们,应该先看懂后面的,然后再倒回来看
*
*/ // i 是位置索引,bound 是边界,注意是从后往前
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh; // 下面这个 while 真的是不好理解
// advance 为 true 表示可以进行下一个位置的迁移了
// 简单理解结局:i 指向了 transferIndex,bound 指向了 transferIndex-stride
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false; // 将 transferIndex 值赋给 nextIndex
// 这里 transferIndex 一旦小于等于 0,说明原数组的所有位置都有相应的线程去处理了
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
// 看括号中的代码,nextBound 是这次迁移任务的边界,注意,是从后往前
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
// 所有的迁移操作已经完成
nextTable = null;
// 将新的 nextTab 赋值给 table 属性,完成迁移
table = nextTab;
// 重新计算 sizeCtl:n 是原数组长度,所以 sizeCtl 得出的值将是新数组长度的 0.75 倍
sizeCtl = (n << 1) - (n >>> 1);
return;
} // 之前我们说过,sizeCtl 在迁移前会设置为 (rs << RESIZE_STAMP_SHIFT) + 2
// 然后,每有一个线程参与迁移就会将 sizeCtl 加 1,
// 这里使用 CAS 操作对 sizeCtl 进行减 1,代表做完了属于自己的任务
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
// 任务结束,方法退出
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return; // 到这里,说明 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT,
// 也就是说,所有的迁移任务都做完了,也就会进入到上面的 if(finishing){} 分支了
finishing = advance = true;
i = n; // recheck before commit
}
}
// 如果位置 i 处是空的,没有任何节点,那么放入刚刚初始化的 ForwardingNode ”空节点“
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
// 该位置处是一个 ForwardingNode,代表该位置已经迁移过了
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
// 对数组该位置处的结点加锁,开始处理数组该位置处的迁移工作
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
// 头结点的 hash 大于 0,说明是链表的 Node 节点
if (fh >= 0) {
// 下面这一块和 Java7 中的 ConcurrentHashMap 迁移是差不多的,
// 需要将链表一分为二,
// 找到原链表中的 lastRun,然后 lastRun 及其之后的节点是一起进行迁移的
// lastRun 之前的节点需要进行克隆,然后分到两个链表中
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
// 其中的一个链表放在新数组的位置 i
setTabAt(nextTab, i, ln);
// 另一个链表放在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
// advance 设置为 true,代表该位置已经迁移完毕
advance = true;
}
else if (f instanceof TreeBin) {
// 红黑树的迁移
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
// 如果一分为二后,节点数少于 8,那么将红黑树转换回链表
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t; // 将 ln 放置在新数组的位置 i
setTabAt(nextTab, i, ln);
// 将 hn 放置在新数组的位置 i+n
setTabAt(nextTab, i + n, hn);
// 将原数组该位置处设置为 fwd,代表该位置已经处理完毕,
// 其他线程一旦看到该位置的 hash 值为 MOVED,就不会进行迁移了
setTabAt(tab, i, fwd);
// advance 设置为 true,代表该位置已经迁移完毕
advance = true;
}
}
}
}
}
}
参考资料 / 相关推荐:
【死磕Java并发】—–J.U.C之Java并发容器:ConcurrentHashMap
Java7/8 中的 HashMap 和 ConcurrentHashMap 全解析
Java并发(十七):ConcurrentHashMap的更多相关文章
- java并发初探ConcurrentHashMap
java并发初探ConcurrentHashMap Doug Lea在java并发上创造了不可磨灭的功劳,ConcurrentHashMap体现这位大师的非凡能力. 1.8中ConcurrentHas ...
- Java并发容器--ConcurrentHashMap
引子 1.不安全:大家都知道HashMap不是线程安全的,在多线程环境下,对HashMap进行put操作会导致死循环.是因为多线程会导致Entry链表形成环形数据结构,这样Entry的next节点将永 ...
- Java并发分析—ConcurrentHashMap
LZ在 https://www.cnblogs.com/xyzyj/p/6696545.html 中简单介绍了List和Map中的常用集合,唯独没有CurrentHashMap.原因是CurrentH ...
- 深入理解Java并发容器——ConcurrentHashMap
目录 重要属性和类 put 为什么java8后放弃分段锁,改用CAS和同步锁 初始化 addCount 扩容 树化 参考 重要属性和类 sizeCtl 容量控制标识符,在不同的地方有不同用途,而且它的 ...
- Java 并发实践 — ConcurrentHashMap 与 CAS
转载 http://www.importnew.com/26035.html 最近在做接口限流时涉及到了一个有意思问题,牵扯出了关于concurrentHashMap的一些用法,以及CAS的一些概念. ...
- Java并发编程-ConcurrentHashMap
特点: 将桶分段,并在某个段上加锁,提高并发能力 源码分析: V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { ...
- Java 并发系列之六:java 并发容器(4个)
1. ConcurrentHashMap 2. ConcurrentLinkedQueue 3. ConcurrentSkipListMap 4. ConcurrentSkipListSet 5. t ...
- Java 并发系列之一:java 并发体系
1. java 并发机制的底层原理实现 1.1 volatile 1.2 synchronized 1.3 原子操作 2. java 内存模型(JMM) 3. java并发基础线程 4. java ...
- Java并发编程:并发容器之ConcurrentHashMap(转载)
Java并发编程:并发容器之ConcurrentHashMap(转载) 下面这部分内容转载自: http://www.haogongju.net/art/2350374 JDK5中添加了新的concu ...
随机推荐
- sublime Text快捷键(超级全)
sublime Text快捷键(超级全) Ctrl+Shift+P:打开命令面板 Ctrl+P:搜索项目中的文件 Ctrl+G:跳转到第几行 Ctrl+W:关闭当前打开文件 Ctrl+Shift+W: ...
- Java内存优化和性能优化的几点建议
1.没有必要时请不用使用静态变量 使用Java的开发者都知道,当某个对象被定义为stataic变量所引用,这个对象所占有的内存将不会被回收.有时,开发者会将经常调用的对象或者变量定义为static,以 ...
- wpf设置某容器透明,而不应用到容器的子元素的方法
以Border打比方: <Border.Background> <SolidColorBrush Opacity="0.4" Color="Black& ...
- (一)问候 HttpClient
第一节: HttpClient 简介 HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的.最新的.功能丰富的支持 HTTP 协议的客户端编程工具包,并 ...
- (三)HtmlUnit 实践
第一节: htmlunit 爬取百度云资源
- Effective STL 学习笔记 39 ~ 41
Effective STL 学习笔记 39 ~ 41 */--> div.org-src-container { font-size: 85%; font-family: monospace; ...
- **CI中使用IN查询(where_in)
注意别漏了$this->db->get(); /** * 匹配用户手机号,返回匹配的用户列表 * @param $column_str 'user_id, user_name, user_ ...
- Linux系统的优势
熟悉电脑的人都知道,Linux 相比较于 Windows 有着众多的优势,所以现在越来越多的电脑用户开始使用 Linux 进行办公.学习.总体来讲,Linux 的优势主要有以下几个方面. 一.开源.免 ...
- linux的IPC进程通信方式-匿名管道(一)
linux的IPC进程通信-匿名管道 什么是管道 如果你使用过Linux的命令,那么对于管道这个名词你一定不会感觉到陌生,因为我们通常通过符号"|"来使用管道,但是管道的真正定义是 ...
- GMM与EM算法
用EM算法估计GMM模型参数 参考 西瓜书 再看下算法流程