题目链接


对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树。初始时就是\(n\)棵。

对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并。

对于升序与降序,只需要维护一个标记,若为降序,则给左区间大的那部分。

具体实现还要用set存下每棵线段树维护的区间左端点,便于快速查找包含\([l,r]\)的区间;对每个区间维护其右端点便于快速得到区间大小。

时间、空间复杂度都是\(O((n+m)\log n)\)。

但是在洛谷上要么RE要么MLE。。其它OJ上还是能过的。


Another Solution:

对于询问二分一个值,将所有数根据与这个值的大小关系设为0/1。模拟每次操作,就是将一段区间的0/1分别放在两边。用线段树维护区间和、区间覆盖即可。最后判断是否仅p之前全是0,


线段树合并做法:

//57628kb	1692ms
#include <set>
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 150000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=1e5+5; int n,m,R[N],root[N],tmp[N];
bool type[N];//0:↑
std::set<int> st;
char IN[MAXIN],*SS=IN,*TT=IN; struct Segment_Tree
{
#define S N*34//!
#define lson son[x][0]
#define rson son[x][1]
int tot,top,sk[S],sz[S],son[S][2]; #define Del_Node(x) sk[++top]=x
inline int New_Node()
{
int x=top?sk[top--]:++tot;
lson=rson=0, sz[x]=1;
return x;
}
void Insert(int &x,int l,int r,int p)
{
x=New_Node();
if(l==r) return;
int m=l+r>>1;
if(p<=m) Insert(lson,l,m,p);
else Insert(rson,m+1,r,p);
}
void Split(int &y,int x,int k)//将线段树分为x,y两棵,使得sz[x]==k。
{
y=New_Node();
int ls=sz[lson];
if(ls<k) Split(son[y][1],rson,k-ls);
else son[y][1]=rson, rson=0;
if(ls>k) Split(son[y][0],lson,k);
sz[y]=sz[x]-k, sz[x]=k;
}
int Merge(int x,int y)
{
if(!x||!y) return x^y;
lson=Merge(lson,son[y][0]), rson=Merge(rson,son[y][1]);
sz[x]+=sz[y], Del_Node(y); return x;
}
int Query(int x,int l,int r,int k)
{
if(l==r) return l;
int ls=sz[lson], m=l+r>>1;
if(ls>=k) return Query(lson,l,m,k);
return Query(rson,m+1,r,k-ls);
}
// void Print(int x,int l,int r)
// {
// if(!x) return;
// printf("%d:%d~%d sz:%d\n",x,l,r,sz[x]);
// if(l==r) ;
// else Print(lson,l,l+r>>1), Print(rson,(l+r>>1)+1,r);
// }
// void Output(int x){
// printf("%d root:%d type:%d:\n",x,root[x],type[x]), Print(root[x],1,n), putchar('\n');
// }
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Split(int x,int y)//将x~y划分为一段
{
if(y<x||y>=R[x]) return;
if(!type[x]) T.Split(root[y+1],root[x],y-x+1);
else root[y+1]=root[x], T.Split(root[x],root[y+1],R[x]-y);//保留右边那部分R[x]-x+1-y+x-1
R[y+1]=R[x], R[x]=y, type[y+1]=type[x], st.insert(y+1);
}
void Merge(int x,int y)
{
if(x==y) return;//
root[x]=T.Merge(root[x],root[y]);
R[x]=R[y], st.erase(y);
}
int Query(int k)
{
std::set<int>::iterator p=st.upper_bound(k);
int x=*(--p); k-=x-1;
return type[x]?T.Query(root[x],1,n,R[x]-x+2-k):T.Query(root[x],1,n,k);
} int main()
{
n=read(), m=read();
for(int i=1; i<=n; ++i)
T.Insert(root[i],1,n,read()), st.insert(i), R[i]=i;
std::set<int>::iterator p1,p2;
for(int opt,l,r; m--; )
{
opt=read(), l=read(), r=read();
p1=st.upper_bound(l), Split(*(--p1),l-1);
p1=st.upper_bound(r), Split(*(--p1),r); p1=st.lower_bound(l), p2=st.upper_bound(r);
int now=*p1, t=0;
for(++p1; p1!=p2; ++p1) tmp[++t]=*p1;//Merge要修改set,所以还是先存下来吧。
for(int i=1; i<=t; ++i) Merge(now,tmp[i]);
type[l]=opt; //type[now]=opt;
}
printf("%d\n",Query(read())); return 0;
}

BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)的更多相关文章

  1. [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)

    后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...

  2. [HEOI2016/TJOI2016] 排序 解题报告(二分答案/线段树分裂合并+set)

    题目链接: https://www.luogu.org/problemnew/show/P2824 题目描述: 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在 ...

  3. [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)

    题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...

  4. [HEOI2016/TJOI2016]排序 线段树+二分

    [HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...

  5. 2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串)

    2021.12.09 [HEOI2016/TJOI2016]排序(线段树+二分,把一个序列转换为01串) https://www.luogu.com.cn/problem/P2824 题意: 在 20 ...

  6. 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)

    线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...

  7. BZOJ 4556 [HEOI2016/TJOI2016]字符串

    BZOJ 4556 [HEOI2016/TJOI2016]字符串 其实题解更多是用后缀数组+数据结构的做法,貌似也不好写. 反正才学了 sam 貌似比较简单的做法. 还是得先二分,然后倍增跳到 $ s ...

  8. 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告

    P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...

  9. 【线段树合并】【P2824】 [HEOI2016/TJOI2016]排序

    Description 给定一个长度为 \(n\) 的排列,有 \(m\) 次操作,每次选取一段局部进行升序或降序排序,问你一波操作后某个位置上的数字是几 Hint \(1~\leq~n,~m~\le ...

随机推荐

  1. 【译】第九篇 Replication:复制监视器

    本篇文章是SQL Server Replication系列的第九篇,详细内容请参考原文. 复制监视器允许你查看复制配置组件的健康状况.这一篇假设你遵循前八篇,并且你已经有一个合并发布和事务发布.启动复 ...

  2. mysql5.7半自动同步设置【转】

    mysql的主从复制主要有3种模式: a..主从同步复制:数据完整性好,但是性能消耗高 b.主从异步复制:性能消耗低,但是容易出现主从数据唯一性问题 c.主从半自动复制:介于上面两种之间.既能很好的保 ...

  3. 创建第一个MySQL数据库earth及表area

    Windows 10家庭中文版,MySQL 5.7.20 for Win 64,2018-05-08 数据库earth描述: 用于记录地球上的事物,一期包含地理区域信息——表area. 字符集编码:u ...

  4. 2.SpringBoot之返回json数据

    一.创建一个springBoot个项目 操作详情参考:1.SpringBoo之Helloword 快速搭建一个web项目 二.编写实体类 /** * Created by CR7 on 2017-8- ...

  5. (转载)solr实现满足指定距离范围条件的搜索

    配置schema.xml <?xml version="1.0" encoding="UTF-8" ?> <schema name=" ...

  6. API文档管理平台

    一.应用场景 在公司中,有很多开发,每个人维护的api接口是不一样的.如果有一个统一的api文档管理平台,每个开发,把自己维护的接口录入进去. 之后再开发别的功能时,不需要重复造轮子,直接调用就可以了 ...

  7. R语言学习笔记:choose、factorial、combn排列组合函数

    一.总结 组合数:choose(n,k) —— 从n个中选出k个 阶乘:factorial(k) —— k! 排列数:choose(n,k) * factorial(k) 幂:^ 余数:%% 整数商: ...

  8. HBase混布MapReduce集群学习记录

    一.准备工作 1.1 部署环境 集群规模大概260多台,TSC10机型,机型参数如下: > 1个8核CPU(E5-2620v4) > 64G内存 > HBA,12*4T SATA,1 ...

  9. 如何验证一个地址可否使用—— MmIsAddressValid函数分析

    又是一篇内核函数分析的博文,我个人觉得Windows的内核是最好的老师,当你想实现一个功能之前可以看看Windows内核是怎么做的,说不定就有灵感呢:) 首先看下官方的注释说明: /*++ Routi ...

  10. KnockoutJs学习笔记(一)

    由于工作需要,接触到了Knockout,但是之前对于前台开发真的是不太了解,只能是摸着石头过河,边学边实践了. Knockout的官方网站是:http://knockoutjs.com/.我也是跟着官 ...