https://www.cnblogs.com/zhoushuyu/p/9138251.html

注意如果一开始F(i)中内层式子中j枚举的是除前i种颜色之外还有几种出现S次的颜色,那么后面式子就会难推很多。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,M=,mod=;
int n,m,s,ans,w[N],fac[M],inv[M],rev[N],a[N],b[N]; int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void NTT(int a[],int n,bool f){
for (int i=; i<n; i++) if (i<rev[i]) swap(a[i],a[rev[i]]);
for (int i=; i<n; i<<=){
int wn=ksm(,f ? (mod-)/(i<<) : (mod-)-(mod-)/(i<<));
for (int p=i<<,j=; j<n; j+=p){
int w=;
for (int k=; k<i; k++,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod; a[i+j+k]=(x-y+mod)%mod;
}
}
}
if (f) return;
int inv=ksm(n,mod-);
for (int i=; i<n; i++) a[i]=1ll*a[i]*inv%mod;
} int main(){
freopen("color.in","r",stdin);
freopen("color.out","w",stdout);
scanf("%d%d%d",&n,&m,&s); int N=min(m,n/s),ed=max(n,m);
rep(i,,m) scanf("%d",&w[i]);
fac[]=; rep(i,,ed) fac[i]=1ll*fac[i-]*i%mod;
inv[ed]=ksm(fac[ed],mod-);
for (int i=ed-; ~i; i--) inv[i]=1ll*inv[i+]*(i+)%mod;
rep(i,,N) a[i]=1ll*w[i]*inv[i]%mod;
rep(i,,N) b[i]=(i&)?mod-inv[i]:inv[i];
int nn=,L=; for (; nn<=*N; nn<<=,L++);
for (int i=; i<nn; i++) rev[i]=(rev[i>>]>>)|((i&)<<(L-));
NTT(a,nn,); NTT(b,nn,);
for (int i=; i<nn; i++) a[i]=1ll*a[i]*b[i]%mod;
NTT(a,nn,);
rep(i,,N) ans=(ans+1ll*ksm(m-i,n-i*s)*inv[m-i]%mod*ksm(inv[s],i)%mod*inv[n-i*s]%mod*a[i]%mod)%mod;
printf("%lld\n",1ll*ans*fac[n]%mod*fac[m]%mod);
return ;
}

[BZOJ5306][HAOI2018]染色(容斥+FFT)的更多相关文章

  1. P4491 [HAOI2018]染色 容斥+NTT

    $ \color{#0066ff}{ 题目描述 }$ 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 ...

  2. LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆

    传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...

  3. [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)

    [BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...

  4. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  5. UVa12633 Super Rooks on Chessboard(容斥 + FFT)

    题目 Source http://acm.hust.edu.cn/vjudge/problem/42145 Description Let’s assume there is a new chess ...

  6. UOJ#449. 【集训队作业2018】喂鸽子 min-max容斥,FFT

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ449.html 题解 设 f(i) 表示给 i 只鸽子喂食使得至少一只鸽子被喂饱的期望次数,先 min-max容斥 一下. ...

  7. BZOJ5306 HAOI2018染色(容斥原理+NTT)

    容易想到枚举恰好出现S次的颜色有几种.如果固定至少有i种恰好出现S次,那么方案数是C(M,i)·C(N,i*S)·(M-i)N-i*S·(i*S)!/(S!)i,设为f(i). 于是考虑容斥,可得恰好 ...

  8. [BZOJ5306][HAOI2018]染色

    bzoj luogu Description 给一个长度为\(n\)的序列染色,每个位置上可以染\(m\)种颜色.如果染色后出现了\(S\)次的颜色有\(k\)种,那么这次染色就可以获得\(w_k\) ...

  9. Gym 100548F Color 给花染色 容斥+组合数学+逆元 铜牌题

    Problem F. ColorDescriptionRecently, Mr. Big recieved n flowers from his fans. He wants to recolor th ...

随机推荐

  1. Macaca(一) - 环境配置

    Macaca是阿里提供的一套自动化测试框架,目前已开源. 花了两三个小时研究了一下Macaca的实现原理.因为很好奇它与appium.selenium有啥区别. 实现原理本质上与selenium的we ...

  2. $("节点名").html("字符串")和$("节点名").text("字符串")区别

    1. 经过html方法: $(".js_info").html("~!`@#$%^& ";'<>\=/-!·#¥%…&*()—+|` ...

  3. 个人对java中对象锁与类锁的一些理解与实例

    一  什么是对象锁 对象锁也叫方法锁,是针对一个对象实例的,它只在该对象的某个内存位置声明一个标识该对象是否拥有锁,所有它只会锁住当前的对象,而并不会对其他对象实例的锁产生任何影响,不同对象访问同一个 ...

  4. APUE-文件和目录(八)文件时间

    文件的时间 与文件相关的三个时间值: 访问时间:最后一次访问文件的时间.例如,cat命令会修改这个时间. 修改时间:文件内容最后一次被修改的时间. 状态更改时间:文件的i节点最后一次被修改的时间.例如 ...

  5. BigDecimal常用方法

    一.介绍 Java中提供了大数字(超过16位有效位)的操作类,即 java.math.BinInteger 类和 java.math.BigDecimal 类,用于高精度计算. 其中 BigInteg ...

  6. 【前端vue开发】Hbuilder配置Avalon、AngularJS、Vue指令提示

    偶尔也会研究一下前端内容,因为Hbuilder是基于eclipse开发的,所以用起来倍感亲切啊,而且在我尝试使用的几款前端开发工具中,Hbuilder的表现也是相当出色地,可以访问Huilder官网下 ...

  7. html- 头部元素

    一:HTML <head> 元素 <head> 元素是所有头部元素的容器.<head> 内的元素可包含脚本,指示浏览器在何处可以找到样式表,提供元信息,等等. 以下 ...

  8. JS点击事件的重叠处理(多个点击事件出现冲突)

    最近开发遇见了一个这个样的情况,一个button在一个div中,点击buton是一个事件,点击大的div也是一个事件,但是由于button在div中,点击button会把两个事件都执行了,但是我们想点 ...

  9. Luogu P2310 【loidc,看看海】

    各位大佬都用的排序和杨颙大定理,蒟蒻的我怎么也不会做(瑟瑟发抖),那么,就来一发主席树吧.我们知道线段树可以维护区间,平衡树可以维护值域那么,我们可以用线段树套平衡树来解决这个区间值域的问题线段树套平 ...

  10. Kubernetes 概述和搭建(多节点)

    一.Kubernetes整体概述和架构 Kubernetes是什么 Kubernetes是一个轻便的和可扩展的开源平台,用于管理容器化应用和服务.通过Kubernetes能够进行应用的自动化部署和扩缩 ...