【CF248E】Piglet's Birthday(动态规划)

题面

洛谷

CodeForces

翻译:

给定\(n\)个货架,初始时每个上面有\(a[i]\)个蜜罐。

有\(q\)次操作,每次操作形如\(u,v,k\),表示从货架\(u\)上任意选择\(k\)个蜜罐试吃(吃过的也还能吃),吃完后把这\(k\)个蜜罐放到\(v\)货架上去。

每次操作完之后回答所有蜜罐都被试吃过的货架数量的期望。

题解

发现没被吃过的数量对于每个货架而言都是单调不增的。

所以考虑没有被吃过的数量,设\(f[i][j]\)表示第\(i\)个货架有\(j\)个蜜罐没有被试吃的概率。

转移的话枚举当前试吃了几个没被吃过的蜜罐用组合数转移即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 100100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
double f[MAX][111],ans;
int n,q,a[MAX],b[MAX];
double C(int n,int m)
{
if(n<m)return 0;
double ret=1;
for(int i=1;i<=m;++i)ret=ret*(1.0*(n-i+1)/i);
return ret;
}
int main()
{
n=read();
for(int i=1;i<=n;++i)a[i]=b[i]=read();
for(int i=1;i<=n;++i)f[i][a[i]]=1;
for(int i=1;i<=n;++i)ans+=f[i][0];
q=read();
for(int i=1;i<=q;++i)
{
int u=read(),v=read(),K=read();ans-=f[u][0];
for(int j=0;j<=a[u];++j)
{
double g=0,tt=C(b[u],K);
for(int k=0;k<=K;++k)g+=f[u][j+k]*C(j+k,k)*C(b[u]-j-k,K-k)/tt;
f[u][j]=g;
}
b[u]-=K;b[v]+=K;ans+=f[u][0];
printf("%.10lf\n",ans);
}
return 0;
}

【CF248E】Piglet's Birthday(动态规划)的更多相关文章

  1. CF248E Piglet's Birthday

    题面 题意翻译 给定$n$个货架,初始时每个上面有$a[i]$个蜜罐. 有$q$次操作,每次操作形如$u,v,k$,表示从货架$u$上任意选择$k$个蜜罐试吃(吃过的也还能吃),吃完后把这$k$个蜜罐 ...

  2. CF248E Piglet's Birthday(概率dp)

    题面 luogu CodeForces 题解 \(orz\) yyb 转移蜜罐其实是吓唬人的...... 转移的蜜罐都是尝试过的,所有只关心当前架子上的蜜罐数 设\(f[i][j]\)表示第i个货架有 ...

  3. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  4. NOIP前的刷题记录

    因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数   组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...

  5. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  6. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  7. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  8. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  9. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

随机推荐

  1. [ 转]Shell中参数($0,$1,$#,$NF,$@等)的含义

    Shell中参数($0,$1,$#,$NF,$@等)的含义 发布时间:2018-01-19 来源:网络 上传者:用户 摘要:此处仅仅从来记录平时常用的命令的参数.以免下次忘记时及时找到.也方便更多的人 ...

  2. centos7上的postgresql10安装和配置

    安装数据库 安装参考官方文档:https://www.postgresql.org/download/linux/redhat/ 1.Install the repository RPM: yum i ...

  3. python包管理工具pip

    你可以使用一个名为 pip 的程序来安装.升级和移除软件包.默认情况下 pip 将从 Python Package Index <https://pypi.org> 安装软件包.你可以在浏 ...

  4. PLSQL面向对象

    ```sql --定义可被SQL语句调用的子程序 create or replace function getempdept(       p_empno emp.empno%type )return ...

  5. .NetCore mvc Ajax Post数据到后端

    在前端页面中,如果没有表单,想把复杂对象提交到后端,可使用以下方法 后端Controller中定义以下方法: [HttpPost] public int AddSolution([FromBody]S ...

  6. RAID系列技术详解

    1.RAID 0 RAID 0是把n个物理磁盘虚拟成一个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成一个逻辑上连续,物理上也连续的虚拟磁盘.一级磁盘控制器(指使用这个虚拟磁盘的控制器,如果某台主机 ...

  7. du命令详解

    基础命令学习目录首页 原文链接:https://blog.csdn.net/linuxnews/article/details/51207738 导读du命令是检查硬盘使用情况,统计文件或目录及子目录 ...

  8. #1490 : Tree Restoration-(微软2017在线笔试)

    输入n m km个数,表示每层的节点个数接下来m行是每层的节点,节点顺序是从左往右的k个叶子节点k*k个矩阵,表示叶子节点之间的距离 输出:每个节点的父亲节点编号,root节点是0 题解:1.很明显, ...

  9. babel无法编译?

    ECMAScript 6(ES6)的发展或者说普及之快可以说是难以想象的,对很多人来说ECMAScript 5(ES5)都还普及呢.现代浏览器对ES6新特新或多或少的有些支持,但支持度不高,所以要想在 ...

  10. oracle安装出错/runInstaller

    http://blog.csdn.net/yabingshi_tech/article/details/48313955 http://www.cnblogs.com/lihaozy/archive/ ...