Solution

  记序列为\(a\),计算出与\(a_i\)相等的前一个元素的位置\(pre_i\),以及后一个元素的位置\(nex_i\),显然,对于那些左端点处于\((pre_i,i]\)以及右端点处于\([i,nex_i)\)的区间都可以认为是合法的。

  

  那么我们可以将每个区间\([l,r]\)抽象成一个二维平面的点\((l,r)\),每一个元素可以使得一部分区间合法,可以抽象为一个横坐标范围为\([pre_i+1,i]\)且纵坐标范围为\([i,nex_i-1]\)的矩形。对所有矩形进行求交,如果矩形覆盖了所有的合法点(也就是一个上三角形),那么序列就是合法的,否则不合法。

  

​  但是这样跑的非常慢!在BZOJ上AC的扫描线代码在我们OJ上是完全被卡常的.....有没有更加简便的做法?

  

  考虑\(check(l,r)\)表示所有左右端点处于\([l,r]\)的区间是否合法。则答案就是\(check(1,n)\)。

  

​  枚举\(i\in[l,r]\),一旦找到一个\(i\)使得\(pre_i<l\)且\(nex_i>r\),就停下。如果找不到,显然序列\([l,r]\)本身就不合法,直接返回\(false\)。此时我们直接可以得知,左端点处于\([l,i]\)且右端点处于\([i,r]\)的区间全部是合法的!还剩下左右断电都处于\([l,i)\)或\((i,r]\)的区间未检查,返回\(check(l,i-1)\&\&check(i+1,r)\)即可。

  

​  但是枚举这一步的复杂度我们没有保证,最坏总复杂度会达到\(O(n^2)\)。我们需要一个思想:从两头向中间同时推进枚举,直到遇到第一个所需点为止。

  

  时间复杂度是\(T(n)=\max\{T(i)+T(n-i)+\min(n,n-i)\}=O(n\lg n)\)。

  

  为什么呢?感性地讲,如果把递归步骤倒过来看,就是一个启发式合并!关键就在\(min(n,n-i)\)这里,每一层递归贡献的复杂度恰好是关键点与边缘的距离,而我们每次都找最靠近边缘的一个关键点,相当于启发式里面的对较小的部分进行操作的思想一样。

  

  然后就做完了,这种两端向中间枚举的思想很值得学习和思考。

  

  

  

Code

  

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=200005;
int n,a[N];
int dizlis[N],dizcnt;
int pre[N],nex[N],mark[N];
void Diz(){
dizcnt=n;
memcpy(dizlis,a,(dizcnt+1)*sizeof(int));
sort(dizlis+1,dizlis+1+dizcnt);
dizcnt=unique(dizlis+1,dizlis+1+dizcnt)-dizlis-1;
for(int i=1;i<=n;i++)
a[i]=lower_bound(dizlis+1,dizlis+1+dizcnt,a[i])-dizlis;
}
bool check(int l,int r){
if(l>r) return true;
int p1=l,p2=r;
while(p1<=p2){
if(pre[p1]<l&&nex[p1]>r)
return check(l,p1-1)&&check(p1+1,r);
p1++;
if(pre[p2]<l&&nex[p2]>r)
return check(l,p2-1)&&check(p2+1,r);
p2--;
}
return false;
}
int Main(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
Diz();
for(int i=1;i<=dizcnt;i++) mark[i]=0;
for(int i=1;i<=n;i++)
pre[i]=mark[a[i]],mark[a[i]]=i;
for(int i=1;i<=dizcnt;i++) mark[i]=n+1;
for(int i=n;i>=1;i--)
nex[i]=mark[a[i]],mark[a[i]]=i;
puts(check(1,n)?"non-boring":"boring");
return 0;
}
int main(){
int T;
scanf("%d",&T);
while(T--) Main();
return 0;
}

【BZOJ4059】Non-boring sequences的更多相关文章

  1. 【bzoj4059】[Cerc2012]Non-boring sequences 分治

    题目描述 我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短.一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次.给定一个整数序列, ...

  2. 【题解】CF264B Good Sequences

    [题解]CF264B Good Sequences 具有很明显的无后效性. 考虑\(dp\). 考虑初始条件,显然是\(dp(0)=0\) 考虑转移,显然是\(dp(t)=max(dp[k])+1\) ...

  3. 【LeetCode】Repeated DNA Sequences 解题报告

    [题目] All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: &quo ...

  4. 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)

    4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 16 ...

  5. 【BZOJ4059】Non-boring sequences(分析时间复杂度)

    题目: BZOJ4059 分析: 想了半天没什么想法,百度到一个神仙做法-- 设原数列为 \(a\),对于每一个 \(i\) 求出前一个和后一个和 \(a_i\) 相等的位置 \(pre[i]\) 和 ...

  6. 【leetcode】Repeated DNA Sequences(middle)★

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  7. 【Leetcode】【Medium】Repeated DNA Sequences

    All DNA is composed of a series of nucleotides abbreviated as A, C, G, and T, for example: "ACG ...

  8. 【HDOJ】4358 Boring counting

    基本思路是将树形结构转线性结构,因为查询的是从任意结点到叶子结点的路径.从而将每个查询转换成区间,表示从该结点到叶子结点的路径.离线做,按照右边界升序排序.利用树状数组区间修改.树状数组表示有K个数据 ...

  9. 【HDOJ】3518 Boring Counting

    后缀数组2倍增可解. #include <cstdio> #include <cstring> #include <cstdlib> #define MAXN 10 ...

随机推荐

  1. 在python脚本中设置环境变量,并运行相关应用

    1. 问题 在自动化应用的时候 ,有时候环境变量与运行需要不一致.这时候有两种选择: 改变节点环境变量,使得其和运行需求保持一致: 在自动化脚本中设置环境变量,其范围只在脚本运行环境中有效. 显然,当 ...

  2. 如何判断Map中的key或value是什么类型

    在上班写工具类时,遇到了一个问题,将xml文件的节点都放入map容器中时,map的value也是一个map,导致取map的value时,需要判断这个value的数据类型,用到了一下说的这些知识: 对于 ...

  3. 如何判断Map中的key或value类型

    在上班写工具类时,遇到了一个问题,将xml文件的节点都放入map容器中时,map的value也是一个map,导致取map的value时,需要判断这个value的数据类型,用到了一下说的这些知识: 对于 ...

  4. Visual Studio的框选代码区块功能

    要从Visual Studio里复制代码粘贴到其他地方,会因为对齐的问题,造成粘贴的时候,代码左边带有大量的空格. 而VS有一个很好的功能就是框选功能,使用方法是,将光标放置在要框选代码的最左边,然后 ...

  5. Docker持久化存储与数据共享

    一.Docker持久化数据的方案 基于本地文件系统的Volume:可以在执行docker create或docker run时,通过-v参数将主机的目录作为容器的数据卷.这部分功能便是基于本地文件系统 ...

  6. 9.Hive Metastore Administration

    前言metastore参数metastore的基本参数metastore的额外参数客户端参数使用zk自动发现mestastore启动hive metastore服务 前言 本节讲metastore相关 ...

  7. kerkee demo编译连接过程中遇到的问题及解决方法(iOS)

    https://github.com/kercer/kerkee_ios 1.刚打开这个demo的时候是下图这个样子的,我们很自然的可以想到将kerkee.xcoderproj添加到项目里面 2.将k ...

  8. 函数式编程与React高阶组件

    相信不少看过一些框架或者是类库的人都有印象,一个函数叫什么creator或者是什么什么createToFuntion,总是接收一个函数,来返回另一个函数.这是一个高阶函数,它可以接收函数可以当参数,也 ...

  9. 第39次Scrum会议(12/5)【欢迎来怼】

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/12/5 11:35~11:57,总计22min.地点:东北师 ...

  10. 实验1:java开发环境的熟悉

    一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 3.实现四则运算并进行测试. 二.实验知识点 1. JVM.JRE.JDK的安装 ...