【题解】HAOI2018染色
好坑啊不开心……
其实这题的想法还是比较简单粗暴的。题目明示恰好xxx,显然排除斜率二分这个玩意儿,那么不就只剩下容斥了嘛……
令 \(A_{x}\) 为恰好出现了 \(S\) 次的至少有 \(x\) 种的方案数, \({B_{x}}\) 为恰好出现了\(S\) 次的颜色恰好 \(x\) 种的方案数。\(A_{x}\) 可以 \(O(1)\) 求得,\(A_{x} = \frac{\binom{n}{S * x} * (m - x) ^ {n - S * x} * (S * i)!}{(S!)^{x}}\)。(为了方便描述,我们在下面所说的颜色均为满足恰好出现 \(S\) 次的颜色)。
那么,一个恰好有 \(x\) 种颜色的方案对答案的贡献应该为
(我们先只考虑颜色种数恰好为 \(k\) 的)
\(g_{x} = [x = k] = \sum_{i = 0}^{x}\binom{x}{i}f_{i}\)
(\(f_{i}\) 为容斥系数)
二项式反演,得
\(f_{x} = \binom{k}{x} * (-1) ^ {k - x}\)
所以令 \(B_{x}\) 为恰好 \(x\) 种颜色的方案数,有:
\(B_{x} = \sum_{i = 0}^{m}\binom{m}{i}*A_{i}*\binom{i}{x}*(-1)^{i - x}\)
由于有 \(m\) 个\(B_{x}\) 要求值,且明显的给了一个NTT模数,
考虑转化成卷积的形式:
(把与各种变量相关的尽量整理到一起)
得到:\(B_{x} = \frac{(-1)^{-x}}{x!}\sum_{i = 0}^{m}\frac{\binom{m}{i}*(-1)^{i}}{(i - x)!}\)
前面的是个常数,后面的是一个卷积(把 \(i - x\) 先 \(+ m\) 再反转(防止爆负))……上NTT就好了。
但这还没完!预处理逆元、阶乘逆元、阶乘的话会容易TLE!所以应该快速幂暴力处理逆元……(;′⌒`)
#include <bits/stdc++.h>
using namespace std;
#define maxn 10000005
#define mod 1004535809
#define int long long
int n, m, M, S, W[maxn], G[maxn], a[maxn], b[maxn], c[maxn];
int ans, K, fac[maxn], A[maxn], B[maxn];
int lim = , len, rev[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int Up(int x) { if(x >= mod) x -= mod; return x; }
int Down(int x) { if(x < ) x += mod; return x; }
int Mod(int x) { x %= mod; if(x < ) x += mod; return x; }
int Qpow(int x, int timer)
{
int base = ;
for(; timer; timer >>= , x = x * x % mod)
if(timer & ) base = x * base % mod;
return base;
}
#define inv(x) Qpow(x, mod - 2) int C(int n, int m)
{
if(n < m || n < || m < ) return ;
int t = fac[n] * inv(fac[m]) % mod * inv(fac[n - m]) % mod;
return t;
} void init()
{
fac[] = ;
int t = max(n, m);
for(int i = ; i <= t; i ++) fac[i] = fac[i - ] * i % mod;
} void Pre()
{
for(int i = ; i <= m; i ++)
{
if(S * i > n) break;
int t = S * i, t1 = C(n, t) * fac[t] % mod;
A[i] = t1 * Qpow(inv(fac[S]), i) % mod * Qpow(m - i, n - t) % mod;
}
for(int i = ; i <= m; i ++)
a[i] = C(m, i) * A[i] % mod * fac[i] % mod * Qpow(-, i) % mod;
for(int i = -m; i <= m; i ++) c[i + K] = i < ? : inv(fac[i]);
for(int i = ; i <= M; i ++) b[i] = c[M - i];
} void NTT(int *A, int opt)
{
int t = opt < ? Qpow(, mod - ) : ;
for(int i = ; i < lim; i ++)
if(i < rev[i]) swap(A[i], A[rev[i]]); for(int l = ; l < lim; l <<= )
{
int g = Qpow(t, (mod - ) / (l << ));
for(int i = ; i < l; i ++) G[i] = 1ll * G[i - ] * g % mod;
for(int i = ; i < lim; i += (l << ))
for(int j = i; j <= i + l - ; j ++)
{
int x = A[j], y = 1ll * G[j - i] * A[j + l] % mod;
A[j] = Up(x + y); A[j + l] = Down(x - y);
}
}
} signed main()
{
n = read(), m = read(), S = read(); K = m, M = m * + ;
for(int i = ; i <= m; i ++) W[i] = read();
init(), Pre(); G[] = ;
while(lim <= M + m) lim <<= , len ++;
for(int i = ; i < lim; i ++)
rev[i] = (rev[i >> ] >> ) | ((i & ) << ((len - )));
NTT(a, ), NTT(b, );
for(int i = ; i < lim; i ++) a[i] = a[i] * b[i] % mod;
NTT(a, -); int inv1 = Qpow(lim, mod - );
for(int i = ; i <= m; i ++)
{
int t = ((i & ) ? - : ) * inv(fac[i]) % mod * W[i] % mod;
ans = Mod(ans + a[i + m + ] * inv1 % mod * t % mod);
}
printf("%lld\n", ans);
return ;
}
【题解】HAOI2018染色的更多相关文章
- 【题解】[HAOI2018]染色(NTT+容斥/二项式反演)
[题解][HAOI2018]染色(NTT+容斥/二项式反演) 可以直接写出式子: \[ f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\d ...
- [洛谷P4491] [HAOI2018]染色
洛谷题目链接:[HAOI2018]染色 题目背景 HAOI2018 Round2 第二题 题目描述 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度 ...
- 【LG4491】[HAOI2018]染色
[LG4491][HAOI2018]染色 题面 洛谷 题解 颜色的数量不超过\(lim=min(m,\frac nS)\) 考虑容斥,计算恰好出现\(S\)次的颜色至少\(i\)种的方案数\(f[i] ...
- 题解-HAOI2018全套
去冬令营转了一圈发现自己比别人差根源在于刷题少,见过的套路少(>ω<) 于是闲来无事把历年省选题做了一些 链接放的都是洛谷的,bz偷懒放的也是链接 AM.T1 奇怪的背包 Problem ...
- BZOJ 5306 [HAOI2018] 染色
BZOJ 5306 [HAOI2018] 染色 首先,求出$N$个位置,出现次数恰好为$S$的颜色至少有$K$种. 方案数显然为$a_i=\frac{n!\times (m-i)^{m-i\times ...
- 【BZOJ5306】 [Haoi2018]染色
BZOJ5306 [Haoi2018]染色 Solution xzz的博客 代码实现 #include<stdio.h> #include<stdlib.h> #include ...
- [BZOJ5306] [HAOI2018]染色(容斥原理+NTT)
[BZOJ5306] [HAOI2018]染色(容斥原理+NTT) 题面 一个长度为 n的序列, 每个位置都可以被染成 m种颜色中的某一种. 如果n个位置中恰好出现了 S次的颜色有 K种, 则小 C ...
- [题解 LuoguP4491 [HAOI2018]染色
传送门 神仙计数题 Orz 先令\(F[k]\)表示出现次数恰好为\(S\)次的颜色恰好有\(k\)中的方案数,那么 \[Ans=\sum\limits_{i=0}^mW_iF[i]\] 怎么求\(F ...
- 【BZOJ5306】[HAOI2018]染色(NTT)
[BZOJ5306]染色(NTT) 题面 BZOJ 洛谷 题解 我们只需要考虑每一个\(W[i]\)的贡献就好了 令\(lim=min(M,\frac{N}{S})\) 那么,开始考虑每一个\(W[i ...
随机推荐
- Scrapy爬取携程桂林问答
guilin.sql: CREATE TABLE `guilin_ask` ( `id` INT(11) NOT NULL AUTO_INCREMENT COMMENT '主键', `question ...
- Java子类初始化调用父类无参构造
实在是服了自己,子类初始化调用父类无参构造这种初学者都应该知道的事,我给忘了. 记得当初看书的时候各种概念抄在笔记本上,再上机实践,以为一辈子都不会忘,还是给忘了. 这件事说明了两个问题: 1.我没有 ...
- SpringCloud使用Feign出现java.lang.ClassNotFoundException: org.springframework.cloud.client.loadbalancer.LoadBalancedRetryFactory异常
废话不多说!!! 在SpringCloud项目中配置了Feign来调用restful接口,项目启动的时候报错,报错信息如下: 找不到org.springframework.cloud.client.l ...
- 三羊献瑞:dfs / next_permutation()
三羊献瑞 观察下面的加法算式: 祥 瑞 生 辉 + 三 羊 献 瑞------------------- 三 羊 生 瑞 气 (如果有对齐问题,可以参看[图1.jpg]) 其中,相同的汉字代 ...
- NO.2:自学tensorflow之路------BP神经网络编程
引言 在上一篇博客中,介绍了各种Python的第三方库的安装,本周将要使用Tensorflow完成第一个神经网络,BP神经网络的编写.由于之前已经介绍过了BP神经网络的内部结构,本文将直接介绍Tens ...
- 使用谷歌浏览器调试WEB前端的一些必备调试技巧
转载:http://www.techug.com/post/chrome-debug-tips.html Chrome的开发者工具是个很强大的东西,相信程序员们都不会陌生,不过有些小功能可能并不为大众 ...
- Sprint4
进展:今天一天满课,晚上也没有做什么,所以今天一天没什么进展. 燃尽图:
- Alpha版会议总结
目前的进度: 实现了文字备忘的录入: 实现了提醒功能: 实现了可视化界面: 语音录入功能还没有完成: 界面相当粗糙: 遇到的问题: 语音录入按钮按下后没有反应,目前没有解决思路和方法. 原本的解屏功能 ...
- 关于 error C2001: 常量中有换行符
看过之后,还是有所收获的,先mark一下 原链接: http://www.cnblogs.com/cocos2d-x/archive/2012/02/26/2368873.html#commentfo ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...