明摆着的LCT,问题在于如何维护答案。首先注意到给出的泰勒展开式,并且所给函数求导非常方便,肯定要用上这玩意。容易想到展开好多次达到精度要求后忽略余项。因为x∈[0,1]而精度又与|x-x0|有关,当然是维护x=0.5时的各种东西,粗略算下大概到第13项就可以了。具体要维护的东西当然是对于x的不同次数分别维护一个和。注意编号从0开始。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define lson tree[k].ch[0]
#define rson tree[k].ch[1]
#define lself tree[tree[k].fa].ch[0]
#define rself tree[tree[k].fa].ch[1]
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,fac[];
struct data{int ch[],fa,rev,op;double a,b,ans[],f[];
}tree[N];
double calc(int op,int k,double x,double a,double b)
{
if (op==) return ((k&)<?:-)*pow(a,k)*(k&?cos(a*x+b):sin(a*x+b));
if (op==) return pow(a,k)*exp(a*x+b);
if (op==)
{
if (k==) return a*x+b;
if (k==) return a;
return ;
}
}
void up(int k){for (int i=;i<;i++) tree[k].ans[i]=tree[lson].ans[i]+tree[rson].ans[i]+tree[k].f[i];}
void newpoint(int x)
{
for (int i=;i<;i++) tree[x].f[i]=;
for (int i=;i<;i++)
{
double t=calc(tree[x].op,i,0.5,tree[x].a,tree[x].b);double t2=;
for (int j=i;~j;j--) tree[x].f[j]+=t2*t/fac[j]/fac[i-j],t2/=-;
}
up(x);
}
void rev(int k){if (k) swap(lson,rson),tree[k].rev^=;}
void down(int k){if (tree[k].rev) rev(lson),rev(rson),tree[k].rev=;}
int whichson(int k){return rself==k;}
bool isroot(int k){return lself!=k&&rself!=k;}
void push(int k){if (!isroot(k)) push(tree[k].fa);down(k);}
void move(int k)
{
int fa=tree[k].fa,gf=tree[fa].fa,p=whichson(k);
if (!isroot(fa)) tree[gf].ch[whichson(fa)]=k;tree[k].fa=gf;
tree[fa].ch[p]=tree[k].ch[!p],tree[tree[k].ch[!p]].fa=fa;
tree[k].ch[!p]=fa,tree[fa].fa=k;
up(fa),up(k);
}
void splay(int k)
{
push(k);
while (!isroot(k))
{
int fa=tree[k].fa;
if (!isroot(fa))
if (whichson(k)^whichson(fa)) move(k);
else move(fa);
move(k);
}
}
void access(int k){for (int t=;k;t=k,k=tree[k].fa) splay(k),tree[k].ch[]=t,up(k);}
void makeroot(int k){access(k),splay(k),rev(k);}
int findroot(int k){access(k),splay(k);for (;lson;k=lson) down(k);splay(k);return k;}
void link(int x,int y){makeroot(x),tree[x].fa=y;}
void cut(int x,int y){makeroot(x),access(y),splay(y);tree[x].fa=tree[y].ch[]=,up(y);}
void modify(int x,int op,double a,double b){access(x),splay(x);tree[x].op=op,tree[x].a=a,tree[x].b=b;newpoint(x);}
double query(int u,int v,double x)
{
makeroot(u),access(v),splay(v);
double s=,t=;
for (int i=;i<;i++)
{
s+=t*tree[v].ans[i];
t*=x;
}
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5020.in","r",stdin);
freopen("bzoj5020.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
fac[]=;for (int i=;i<;i++) fac[i]=fac[i-]*i;
n=read(),m=read();read();
for (int i=;i<=n;i++) tree[i].op=read(),scanf("%lf %lf",&tree[i].a,&tree[i].b),newpoint(i);
while (m--)
{
char c=getc();
switch (c)
{
case 'a':{link(read()+,read()+);break;}
case 'd':{cut(read()+,read()+);break;}
case 'm':
{
int x=read()+,op=read();double a,b;scanf("%lf %lf",&a,&b);
modify(x,op,a,b);
break;
}
case 't':
{
int u=read()+,v=read()+;double x;scanf("%lf",&x);
if (findroot(u)!=findroot(v)) printf("unreachable\n");
else printf("%.10f\n",query(u,v,x));
break;
}
}
}
return ;
}

BZOJ5020 THUWC2017在美妙的数学王国中畅游(LCT)的更多相关文章

  1. [BZOJ5020][THUWC2017]在美妙的数学王国中畅游(LCT)

    5020: [THUWC 2017]在美妙的数学王国中畅游 Time Limit: 80 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 323  ...

  2. Luogu4546 THUWC2017 在美妙的数学王国中畅游 LCT、泰勒展开

    传送门 题意:反正就是一堆操作 LCT总是和玄学东西放在一起我们不妨令$x_0=0.5$(其实取什么都是一样的,但是最好取在$[0,1]$的范围内),将其代入给出的式子,我们得到的$f(x)$的式子就 ...

  3. [THUWC2017]在美妙的数学王国中畅游 LCT+泰勒展开+求导

    p.s. 复合函数求导时千万不能先带值,再求导. 一定要先将符合函数按照求导的规则展开,再带值. 设 $f(x)=g(h(x))$,则对 $f(x)$ 求导: $f'(x)=h'(x)g'(h(x)) ...

  4. 洛谷P4546 [THUWC2017]在美妙的数学王国中畅游 [LCT,泰勒展开]

    传送门 毒瘤出题人卡精度-- 思路 看到森林里加边删边,容易想到LCT. 然而LCT上似乎很难实现往一条链里代一个数进去求和,怎么办呢? 善良的出题人在下方给了提示:把奇怪的函数泰勒展开搞成多项式,就 ...

  5. [THUWC2017]在美妙的数学王国中畅游

    [THUWC2017]在美妙的数学王国中畅游 e和sin信息不能直接合并 泰勒展开,大于21次太小,认为是0,保留前21次多项式即可 然后就把e,sin ,kx+b都变成多项式了,pushup合并 上 ...

  6. 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开

    咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...

  7. BZOJ5020: [THUWC 2017]在美妙的数学王国中畅游(LCT,泰勒展开,二项式定理)

    Description 数字和数学规律主宰着这个世界.   机器的运转,   生命的消长,   宇宙的进程,   这些神秘而又美妙的过程无不可以用数学的语言展现出来.   这印证了一句古老的名言:   ...

  8. 【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游 LCT 泰勒展开

    题目大意 给你一棵树,每个点有一个函数\(f(x)\) 正弦函数 \(\sin(ax+b) (a\in[0,1],b\in[0,\pi],a+b\in[0,\pi])\) 指数函数 \(e^{ax+b ...

  9. [THUWC2017][bzoj5020] 在美妙的数学王国中畅游 [LCT+泰勒展开]

    题面 LOJ传送门 思路 这里很重要 它提示我们,把给定的三个函数泰勒展开,并用LCT维护每一项泰勒展开式的值,维护十几项就满足了题目的精度要求 我们考虑一个函数在0位置的泰勒展开 $f(x)=\su ...

随机推荐

  1. 关于Memcached 你了解多少?

    好久没有写博客了,自从年后到现在要么就是加班 要么还是在加班 基本都是到夜里1点多 通宵的干,事情太多,项目太急  .难得今天闲暇一段时间来,看看书,写一写博客,没事就再重新的研究一下关于Memcac ...

  2. 使用Fiddler进行APP弱网测试

    一.安装Fiddler 网上说要先安装.NET Framwork4,应该是由于本机已装,所以在安装Fiddler时并没有相关提示. Fiddler安装包:https://www.telerik.com ...

  3. Error! Failed to install react, react-dom, next, try again.

    问题:用create-next-app创建应用报错,部分模块没有安装,react.react-dom.next等模块安装失败,如下图所示 操作环境: 系统:Ubuntu 16.04.4 LTS npm ...

  4. 维诺图(Voronoi Diagram)分析与实现(转)

    一.问题描述1.Voronoi图的定义又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂直平分线组成的连续多边形组成. 2.Voronoi图的特点(1)每个V多边形内有一个生成元: ...

  5. birt 访问频繁报错Cannot create JDBC driver of class '' for connect URL 'null' java.sql.SQLException: No suitable driver

    一般birt项目都是部署tomcat启动.这个问题大概率是因为没有配置JNDI数据源的原因. 参考链接: https://www.cnblogs.com/xdp-gacl/p/3951952.html

  6. DevOps on AWS之Elastic BeanStalk

    Elastic BeanStalk相关概念 童话世界中存在着一种魔力beanstalk(豆荚),种在花盆里可以无限的向上生长,越长越高直达云端.AWS Elastic Beanstalk也采用类似概念 ...

  7. 学习笔记 | Set

    目录 Set Set 前言 不会数据结构选手 当几乎没写过什么数据结构的菜鸡遇上了毒瘤的splay和treap 时间正一点一点地被续走TAT 听说set有时候可以替代treap和splay 那么菜鸡L ...

  8. Annotation 使用备忘2

    title: Annotation 使用备忘 date: 2018-01-02 20:48:43 tags: [Annotation] categories: [Programming,Java] - ...

  9. jenkins设置定时任务

    每次都手动的构建项目显然不够方便,有时候需要定时地执行自动化测试脚本.例如,每天晚上定时执行 pjenkins.py 文件来运行自动化测试项目. 设置定时任务 前面已经创建的 “python test ...

  10. C++:new&delete

    一.new的浅析 在C++中,new主要由三种形式:new operator.operator new和placement new • new operator new operator即一些C++书 ...