tf.nn.conv2d 参数介绍
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,],要求类型与参数input相同,有一个地方需要注意,第三维卷积核的宽度,图像通道数,卷积核个数,就是参数input的第四维in_channels
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map,shape仍然是[batch, height, width, channels]这种形式。
那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:
1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核()去做卷积,最后会得到一张3×3的feature map对应的shape:[1,1,1,1]
2.增加图片的通道数,使用一张3×3五通道的图像(对应的shape:[1,3,3,5]),用一个1×1的卷积核()去做卷积,仍然是一张3×3对应的shape:[1,1,1,1]的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做卷积。
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([1,1,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和
input = tf.Variable(tf.random_normal([1,3,3,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
4.使用更大的图片将情况2的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
注意我们可以把这种情况看成情况2和情况3的中间状态,卷积核以步长1滑动遍历全图,以下x表示的位置,表示卷积核停留的位置,每停留一个,输出feature map的一个像素
.....
.xxx.
.xxx.
.xxx.
.....
5.上面我们一直令参数padding的值为‘VALID’,当其为‘SAME’时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
6.如果卷积核有多个
input = tf.Variable(tf.random_normal([1,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
此时输出7张5×5的feature map
7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
此时,输出7张3×3的feature map
x.x.x
.....
x.x.x
.....
x.x.x
8.如果batch值不为1,同时输入10张图
input = tf.Variable(tf.random_normal([10,5,5,5]))
filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]
tf.nn.conv2d 参数介绍的更多相关文章
- 小记tensorflow-1:tf.nn.conv2d 函数介绍
tf.nn.conv2d函数介绍 Input: 输入的input必须为一个4d tensor,而且每个input的格式必须为float32 或者float64. Input=[batchsize,im ...
- TF-卷积函数 tf.nn.conv2d 介绍
转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...
- tf.nn.conv2d函数和tf.nn.max_pool函数介绍
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 介绍参数: input:指卷积需要输入的 ...
- tf.nn.conv2d。卷积函数
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- tf.nn.conv2d
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) input: 指需要做卷积的输入图像,它 ...
- tf入门-tf.nn.conv2d是怎样实现卷积的?
转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...
- 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...
- 【TensorFlow】理解tf.nn.conv2d方法 ( 附代码详解注释 )
最近在研究学习TensorFlow,在做识别手写数字的demo时,遇到了tf.nn.conv2d这个方法,查阅了官网的API 发现讲得比较简略,还是没理解.google了一下,参考了网上一些朋友写得博 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
随机推荐
- 实验五 — — Java网络编程及安全
java的第五个实验——Java网络编程及安全 北京电子科技学院 实 验 报 告 课程:Java程序设计 班级:1352 姓名:林涵锦 学号:20135213 成绩: ...
- selenium之鼠标事件
1.鼠标悬停火狐版本51,selenium版本3ActionChains(driver).move_to_element(above).perform()执行代码时,报错:selenium.commo ...
- 软工实践l练习一一利用github托管项目
这次实践的主题是在windows环境下将项目通过git将项目托管到github上.通过实践,基本掌握一些git命令的使用,在github上注册账号并学会创建repositly和organization ...
- 索引超出了数组界限。 在 System.Collections.Generic.Dictionary`2.Resize
博问:Dictionary 超出了数组界限 异常: Exception type: IndexOutOfRangeException Exception message: 索引超出了数组界限. 在 S ...
- Spring下使用开发webservice
依赖包 <!-- CXF Dependencies --> <dependency> <groupId>org.apache.cxf</groupId> ...
- 更改数据库字符集编码引起的问题、textarea标签输出内容时不能顶格(左对齐)输出
用svn拉下来的项目,部署好的Oracle数据库(gbk编码),用tomcat部署好并发布项目,当访问相关网页时,出现乱码.于是把Oracle的字符编码改成utf8,tomcat也改成UTF-8,重新 ...
- charles使用教程 干货~
大部分内容来自前辈们的摘写,博客园是怎么去转载其他好的博呢~ 言归正传,教程看过后还是自己再来一遍理解和操作才会更加深刻. Charles 是在 Mac/WIN下常用的网络封包截取工具,在做移动开发时 ...
- 【第二周】PSP
日期 C类别 C内容 S开始时间 E结束时间 I间隔(单位:分钟) T净时间(单位:分钟) 9月8日 编程 结对编程 12:15 13:15 10 50 编程 结对编程 16:35 17:30 ...
- docker删除为<none>的镜像
$ docker stop $(docker ps -a | grep "Exited" | awk '{print $1 }') //停止容器 $ docker rm ...
- Java如何查看死锁?
转载自 https://blog.csdn.net/u014039577/article/details/52351626 Java中当我们的开发涉及到多线程的时候,这个时候就很容易遇到死锁问题,刚开 ...