http://www.lydsy.com/JudgeOnline/problem.php?id=2229

最小割树介绍:http://blog.csdn.net/jyxjyx27/article/details/42750833

http://blog.csdn.net/miaomiao_ymxl/article/details/54931876

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm> using namespace std; #define N 200
#define M 7000
const int inf=2e9; int n; int tot;
int front[N],nxt[M<<],to[M<<],val[M<<],from[M<<];
int lev[N],num[N];
int path[N];
int cur[N]; int src,decc; int a[N],tmp[N];
bool use[N]; int dis[N][N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; from[tot]=u; val[tot]=w;
//to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; from[tot]=v; val[tot]=0;
} bool bfs()
{
queue<int>q;
for(int i=;i<=n;++i) lev[i]=n;
q.push(decc);
lev[decc]=;
int now,t;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=front[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]==n && val[i^])
{
lev[t]=lev[now]+;
q.push(t);
}
}
}
return lev[src]!=n;
} int augment()
{
int now=decc,flow=inf;
int i;
while(now!=src)
{
i=path[now];
flow=min(flow,val[i]);
now=from[i];
}
now=decc;
while(now!=src)
{
i=path[now];
val[i]-=flow;
val[i^]+=flow;
now=from[i];
}
return flow;
} int isap()
{
int flow=;
if(!bfs()) return ;
memset(num,,sizeof(num));
for(int i=;i<=n;++i) num[lev[i]]++,cur[i]=front[i];
int now=src,t;
while(lev[src]<n)
{
if(now==decc)
{
flow+=augment();
now=src;
}
bool advanced=false;
for(int i=cur[now];i;i=nxt[i])
{
t=to[i];
if(lev[t]==lev[now]- && val[i])
{
advanced=true;
path[t]=i;
cur[now]=i;
now=t;
break;
}
}
if(!advanced)
{
int mi=n;
for(int i=front[now];i;i=nxt[i])
if(val[i]) mi=min(mi,lev[to[i]]);
if(!--num[lev[now]]) break;
num[lev[now]=mi+]++;
cur[now]=front[now];
if(now!=src) now=from[path[now]];
}
}
return flow;
} void dfs(int x)
{
use[x]=true;
for(int i=front[x];i;i=nxt[i])
if(!use[to[i]] && val[i]) dfs(to[i]);
} void solve(int l,int r)
{
if(l>=r) return;
src=a[l]; decc=a[r];
for(int i=;i<=tot;i+=) val[i]=val[i+]=val[i]+val[i+]>>;
int flow=isap();
// printf("%d %d %d\n",l,r,flow);
memset(use,false,sizeof(use));
dfs(src);
for(int i=;i<=n;++i)
if(use[i])
for(int j=;j<=n;++j)
if(!use[j])
dis[i][j]=dis[j][i]=min(dis[i][j],flow);
int i=l,j=r;
for(int k=l;k<=r;++k)
if(use[a[k]]) tmp[i++]=a[k];
else tmp[j--]=a[k];
for(int k=l;k<=r;++k) a[k]=tmp[k];
solve(l,i-);
solve(j+,r);
} int main()
{
// freopen("mincuto.in","r",stdin);
// freopen("mincuto.out","w",stdout);
int T;
read(T);
int m,q;
int u,v,w,x;
int ans;
while(T--)
{
tot=;
memset(front,,sizeof(front));
memset(dis,,sizeof(dis));
read(n); read(m);
for(int i=;i<=n;++i) a[i]=i;
while(m--)
{
read(u); read(v); read(w);
add(u,v,w);
add(v,u,w);
}
solve(,n);
read(q);
while(q--)
{
ans=;
read(x);
for(int i=;i<=n;++i)
for(int j=i+;j<=n;++j)
if(dis[i][j]<=x) ans++;
cout<<ans<<'\n';
}
cout<<'\n';
}
return ;
}

2229: [Zjoi2011]最小割

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 2429  Solved: 863
[Submit][Status][Discuss]

Description

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。

Input

输入文件第一行有且只有一个正整数T,表示测试数据的组数。 对于每组测试数据, 第一行包含两个整数n,m,表示图的点数和边数。 下面m行,每行3个正整数u,v,c(1<=u,v<=n,0<=c<=106),表示有一条权为c的无向边(u,v) 接下来一行,包含一个整数q,表示询问的个数 下面q行,每行一个整数x,其含义同题目描述。

Output

对于每组测试数据,输出应包括q行,第i行表示第i个问题的答案。对于点对(p,q)和(q,p),只统计一次(见样例)。

两组测试数据之间用空行隔开。

Sample Input

1
5 0
1
0

Sample Output

10

【数据范围】
对于100%的数据 T<=10,n<=150,m<=3000,q<=30,x在32位有符号整数类型范围内。
图中两个点之间可能有多条边

bzoj千题计划139:bzoj2229: [Zjoi2011]最小割的更多相关文章

  1. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  2. bzoj2229: [Zjoi2011]最小割(最小割树)

    传送门 这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里) 有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了 //minamoto #includ ...

  3. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  4. bzoj千题计划322:bzoj2561: 最小生成树(最小割)

    https://www.lydsy.com/JudgeOnline/problem.php?id=2561 考虑Kruscal算法求最小生成树的流程 如果 u和v之间的长为L的边能出现在最小生成树里, ...

  5. bzoj千题计划140:bzoj4519: [Cqoi2016]不同的最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=4519 最小割树 #include<queue> #include<cstdio&g ...

  6. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  7. bzoj千题计划141:bzoj3532: [Sdoi2014]Lis

    http://www.lydsy.com/JudgeOnline/problem.php?id=3532 如果没有字典序的限制,那么DP拆点最小割即可 加上字典序的限制: 按c从小到大枚举最小割边集中 ...

  8. bzoj千题计划129:bzoj2007: [Noi2010]海拔

    http://www.lydsy.com/JudgeOnline/problem.php?id=2007 1.所有点的高度一定在0~1之间, 如果有一个点的高度超过了1,那么必定会有人先上坡,再下坡, ...

  9. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

随机推荐

  1. 软工1816 · Beta冲刺(3/7)

    团队信息 队名:爸爸饿了 组长博客:here 作业博客:here 组员情况 组员1(组长):王彬 过去两天完成了哪些任务 协助后端完成历史记录接口.美食排行榜接口 完成食堂平面图的绘制 确定web端业 ...

  2. 【CS231N】1、图像分类

    一.知识点 1. 计算机识别物体面临的困难 视角变化(Viewpoint variation):同一个物体,摄像机可以从多个角度来展现. 大小变化(Scale variation):物体可视的大小通常 ...

  3. 详解Android微信登录与分享

    Android 使用微信登录.分享功能 具体的文档详情微信官网上介绍(微信官网文档),本人直接按照项目部署步骤进行讲解: 第一步:申请你的AppID: 第二步:依赖 dependencies { co ...

  4. vue-cli 安装时 npm 报错 errno -4048

    如何解决vue-cli 安装时  npm 报错 errno -4048 第一种解决方法:以管理身份运行cmd.exe 第二种解决办法:在dos窗口输入命令  npm cache clean  --fo ...

  5. XHTML和HTML、CSS 验证器

    XHTML 验证器和 CSS 验证器.需要这些工具去验证你的页面是否符合 XHTML 和 CSS 标准,并且可以使用它查出奇正错误的地方. XHTML 验证器 地址:http://validator. ...

  6. Linux内核0.11 makefile文件说明

    # # if you want the ram-disk device, define this to be the # size in blocks. # 如果要使用 RAM 就定义块的大小(注释掉 ...

  7. [51CTO]反客为主 ,Linux 成为微软 Azure 上最流行的操作系统

    反客为主 ,Linux 成为微软 Azure 上最流行的操作系统 [世界上唯一确定不变的就是世界在不停的变化] 三年前,微软云计算 Azure 平台 CTO Mark Russinovich 说有四分 ...

  8. Rotate Array II

    Rotate an array of n elements to the right by k steps. For example, with n = 7 and k = 3, the array  ...

  9. Java并发编程:线程池

    一.为什么使用线程池 使用线程的时候直接就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降 ...

  10. uoj35 后缀排序

    题目链接:http://uoj.ac/problem/35 这是一道模板题. 读入一个长度为 n 的由小写英文字母组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第 ...