python3 学习使用api

支持向量机的两种核函数模型进行预测

git: https://github.com/linyi0604/MachineLearning

from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np # 1 准备数据
# 读取波士顿地区房价信息
boston = load_boston()
# 查看数据描述
# print(boston.DESCR) # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
# 查看数据的差异情况
# print("最大房价:", np.max(boston.target)) # 50
# print("最小房价:",np.min(boston.target)) # 5
# print("平均房价:", np.mean(boston.target)) # 22.532806324110677 x = boston.data
y = boston.target # 2 分割训练数据和测试数据
# 随机采样25%作为测试 75%作为训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) # 3 训练数据和测试数据进行标准化处理
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test) ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1)) # 4.1 支持向量机模型进行学习和预测
# 线性核函数配置支持向量机
linear_svr = SVR(kernel="linear")
# 训练
linear_svr.fit(x_train, y_train)
# 预测 保存预测结果
linear_svr_y_predict = linear_svr.predict(x_test) # 多项式核函数配置支持向量机
poly_svr = SVR(kernel="poly")
# 训练
poly_svr.fit(x_train, y_train)
# 预测 保存预测结果
poly_svr_y_predict = linear_svr.predict(x_test) # 5 模型评估
# 线性核函数 模型评估
print("线性核函数支持向量机的默认评估值为:", linear_svr.score(x_test, y_test))
print("线性核函数支持向量机的R_squared值为:", r2_score(y_test, linear_svr_y_predict))
print("线性核函数支持向量机的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(linear_svr_y_predict)))
print("线性核函数支持向量机的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(linear_svr_y_predict)))
# 对多项式核函数模型评估
print("对多项式核函数的默认评估值为:", poly_svr.score(x_test, y_test))
print("对多项式核函数的R_squared值为:", r2_score(y_test, poly_svr_y_predict))
print("对多项式核函数的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(poly_svr_y_predict)))
print("对多项式核函数的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(poly_svr_y_predict))) '''
线性核函数支持向量机的默认评估值为: 0.651717097429608
线性核函数支持向量机的R_squared值为: 0.651717097429608
线性核函数支持向量机的均方误差为: 27.0063071393243
线性核函数支持向量机的平均绝对误差为: 3.426672916872753
对多项式核函数的默认评估值为: 0.40445405800289286
对多项式核函数的R_squared值为: 0.651717097429608
对多项式核函数的均方误差为: 27.0063071393243
对多项式核函数的平均绝对误差为: 3.426672916872753
'''

机器学习之路:python支持向量机回归SVR 预测波士顿地区房价的更多相关文章

  1. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  2. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  3. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  4. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  5. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  6. 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价

    python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...

  7. 机器学习之路:python k近邻回归 预测波士顿房价

    python3 学习机器学习api 使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测 git: https://github.com/linyi0604/Machine ...

  8. 吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

  9. 吴裕雄 python 机器学习——支持向量机线性回归SVR模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm fr ...

随机推荐

  1. 【CC2530强化实训04】定时器间隔定时实现按键N连击

    [CC2530强化实训04]定时器间隔定时实现按键N连击 [题目要求]      2018年全国职业院校技能大赛“物联网技术应用”国赛(高职组)中关于感知层开发的难度陡然增大,三个题目均在Zigbee ...

  2. 双击CAD对象,显示自定义对话框实现方法

    class TlsApplication : IExtensionApplication { void IExtensionApplication.Initialize() { TTest.Start ...

  3. Ubuntu自定义终端窗口位置

    方法一: 自定义终端启动快捷键 具体方法是自定义一个快速启动终端的快捷键,附带设置终端启动时的位置参数.首先获得需要放置窗口的目标位置信息,可以通过终端命令“ xwininfo ”来获得.步骤是首先打 ...

  4. 【矩阵】RQ/QR 分解

    Multiple View Geometry in Computer Vision A.4.1.1 (page 579) 将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 ...

  5. 2016.5.57—— Remove Duplicates from Sorted List

    Remove Duplicates from Sorted List 本题收获: 指针: 不管什么指针在定义是就初始化:ListNode *head = NULL; 如果给head指针赋值为第一个no ...

  6. jQuery动态给下拉列表添加一个选项(创建DOM对象)

    使用的函数:

  7. Css中实现一个盒子固定宽度,另一个盒子宽度自适应的方法

    Css中实现一个盒子固定宽度,另一个盒子宽度自适应的方法 网上方法很多,个人认为以下两种思想是最为常用的. 一种是让第一个盒子脱离文档流,第二个盒子离左边有一定距离. 第二种方法是使用flex布局,不 ...

  8. 【黑客免杀攻防】读书笔记18-最终章Anti Rootkit

    1.免杀技巧的遏制 1.1.PE文件 入口点不在第一个区段或在最后一个区段 入口点处代码附近只有一小段代码 入口点在正常范围之外 入口点为一个无效的值,实际入口点为TLS的入口点 区段名重复或者不属于 ...

  9. aarch64_l1

    L-function-1.23-18.fc26.aarch64.rpm 2017-02-14 08:01 139K fedora Mirroring Project L-function-devel- ...

  10. git summary

    Git 使用经验 缘起 一直想写一篇博文,记录我在使用git时遇到的问题以及解决办法.由于项目忙,偶尔的记录不连续,不成系统.今天有时间记录下来,方便自己以后查看. git 简介及其优势 简单来说,g ...