题目描述

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.

进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.

Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

输入输出格式

输入格式:

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种

洗牌法,都存在一种洗牌法使得能回到原状态。

100%数据满足 Max{Sr,Sb,Sg}<=20。

输出格式:

不同染法除以P的余数

输入输出样例

输入样例#1: 复制

1 1 1 2 7
2 3 1
3 1 2
输出样例#1: 复制

2

说明

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

分析:

先学习下几个引理

burnside引理

http://blog.csdn.net/liangzhaoyang1/article/details/72639208

逆元

https://www.cnblogs.com/linyujun/p/5194184.html

参考了大神博客

http://tgotp.science/

思路:套用burnside引理,这题因为对颜色有限制 不能用 polya ,用动归求出对于一个置换的不动方案数 ;

dp的一些解释:dp[i][j][k]表示前i个循环, 用了1号颜色j个 2号颜色k个的方案数

num[n]表示该洗牌法下的循环节个数;

最后根据burnside引理:

不同的方案数:I=(C(a1)+C(a2)+...C(ag))/G

这题的情况是需要除以m

但是过程中我们都进行的%p

且(a  /  b) % p = (a%p  /  b%p) %p  是错误的,所以我们要用到逆元(这题因为p是质数,用费马小定理就行)

(a  /  b) % p = (a * inv(b) ) % p = (a % p * inv(b) % p) % p

费马小定理

a^(p-1) ≡1 (mod p)

所以 inv(a) = a^(p-2) (mod p)

// 去吧!皮卡丘! 把AC带回来!
// へ     /|
//   /\7    ∠_/
//   / │   / /
//  │ Z _,< /   /`ヽ
//  │     ヽ   /  〉
//  Y     `  /  /
//  イ● 、 ●  ⊂⊃〈  /
//  ()  へ    | \〈
//   >ー 、_  ィ  │ //
//   / へ   / ノ<| \\
//   ヽ_ノ  (_/  │//
//    7       |/
//    >―r ̄ ̄`ー―_
//**************************************
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); }
template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); }
template <class T> inline T min(T a, T b, T c, T d) {
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d) {
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = 3e5 + ;
const int maxx = 1e6 + ;
// name*******************************
int dp[][][];
int a[];
bool flag[];
int num[];
int s1, s2, s3, m, mod;
int tot;
int ans = ;
int sum[];
// function******************************
inline ll qmul(ll a, ll b) {
ll base = a, ans = ;
while (b) {
if (b & 1ll)
ans = (ans * base) % mod;
base = (base * base) % mod;
b >>= 1ll;
}
return ans;
}
//***************************************
int main() {
// ios::sync_with_stdio(0); cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin >> s1 >> s2 >> s3 >> m >> mod;
m++;
tot = s1 + s2 + s3;
For(t, , m) {
if (t == m)
For(i, , tot) a[i] = i;
else
For(i, , tot) cin >> a[i];
memset(flag, , sizeof(flag));
memset(num, , sizeof(num));
memset(sum, , sizeof(sum));
int n = ;
For(j, , tot) {
if (!flag[j]) {
int cnt = ;
int p = j;
while (!flag[p]) {
flag[p] = ;
cnt++;
p = a[p];
}
num[++n] = cnt;
sum[n] = sum[n - ] + cnt;
}
}
dp[][][] = ;
For(i, , n) {
For(j, , s1) {
For(k, , s2) {
int l = sum[i] - j - k; //?
if (l < || l > s3)
continue;
int sum = ;
if (j >= num[i])
sum = (sum + dp[i - ][j - num[i]][k]) % mod;
if (k >= num[i])
sum = (sum + dp[i - ][j][k - num[i]]) % mod;
if (l >= num[i])
sum = (sum + dp[i - ][j][k]) % mod;
dp[i][j][k] = sum;
if (i == n)
ans = (ans + dp[i][j][k]) % mod;
}
}
}
}
int x = ans * qmul(m, mod - ) % mod;
cout << x;
return ;
}

P1446 [HNOI2008]Cards的更多相关文章

  1. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

  2. luogu P1446 [HNOI2008]Cards

    题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnsid ...

  3. luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点

    LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...

  4. 洛谷P1446 [HNOI2008]Cards

    置换群+dp #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring& ...

  5. 【bzoj1004】[HNOI2008]Cards

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2928  Solved: 1754[Submit][Sta ...

  6. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  9. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

随机推荐

  1. 无法在类...中找到资源".bmp"

    在WinForm中写的一个程序,在项目中添加了一个bmp图片,然后 public void SetSubType(int SubType) { m_subType = SubType; switch ...

  2. Pwn with File结构体(一)

    前言 本文由 本人 首发于 先知安全技术社区: https://xianzhi.aliyun.com/forum/user/5274 利用 FILE 结构体进行攻击,在现在的 ctf 比赛中也经常出现 ...

  3. linux 获取shell内置命令帮助信息 help xx

    shell,命令解释器 shell内置命令有cd/umask/pwd等 help shell内置命令适用于所有用户获取shell内置命令的帮助信息help umaskhelp if

  4. 直到黎明 Until Dawn 后感

    直到黎明 会免游戏.白金神作.近些年的恐怖电影都有游戏化的趋势,韩国的某岩vlog,美国的真心话大冒险,都把观众作为meta代入游戏,几乎模糊了游戏与游戏的边界,直到黎明这部电影,与当年的暴雨和超凡双 ...

  5. linux(centos7)下SVN服务器搭建手札

    linux(centos)下SVN服务器如何搭建?说到SVN服务器,想必大家都知道,可以是在LINUX下如何搭建SVN服务器呢?那么今天给大家分享一下linux(centos)搭建SVN服务器的思路! ...

  6. 使用Babel和ES7创建JavaScript模块

    [编者按]本文主要介绍通过 ES7 与 Babel 建立 JavaScript 模块.文章系国内 ITOM 管理平台 OneAPM 工程师编译呈现,以下为正文. 去年,新版的JavaScript发布了 ...

  7. [SQLServer] 数据库SA用户被锁定或者忘记密码的恢复

    一.以管理员权限运行命令提示符 CMD C:\>net stop mssqlserver您想继续此操作吗? (Y/N) [N]: y C:\>net start mssqlserver / ...

  8. Windows自带强大的入侵检测工具——Netstat 命令 查询是否中木马

    Netstat命令可以帮助我们了解网络的整体使用情况.根据Netstat后面参数的不同,它可以显示不同的网络连接信息.Netstat的参数如图,下面对其中一些参数进行说明.如何检测本机是否有被中木马, ...

  9. ASP.NET MVC下Bundle的使用

    ASP.NET MVC中Bundle是用于打包捆绑资源的(一般是css和js),它是在全局文件Global.asax.cs中注册Bundle,而注册的具体实现默认是在App_Start文件夹的Bund ...

  10. 配置nginx官网yum源

    由于yum源中没有我们想要的nginx,那么我们就需要创建一个“/etc/yum.repos.d/nginx.repo”的文件,其实就是新增一个yum源 二.添加nginx.repo 文件: [roo ...