题目描述

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.

进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绿色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌法,而每种方法可以使用多次)洗成另一种.

Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

输入输出格式

输入格式:

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种

洗牌法,都存在一种洗牌法使得能回到原状态。

100%数据满足 Max{Sr,Sb,Sg}<=20。

输出格式:

不同染法除以P的余数

输入输出样例

输入样例#1: 复制

1 1 1 2 7
2 3 1
3 1 2
输出样例#1: 复制

2

说明

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

分析:

先学习下几个引理

burnside引理

http://blog.csdn.net/liangzhaoyang1/article/details/72639208

逆元

https://www.cnblogs.com/linyujun/p/5194184.html

参考了大神博客

http://tgotp.science/

思路:套用burnside引理,这题因为对颜色有限制 不能用 polya ,用动归求出对于一个置换的不动方案数 ;

dp的一些解释:dp[i][j][k]表示前i个循环, 用了1号颜色j个 2号颜色k个的方案数

num[n]表示该洗牌法下的循环节个数;

最后根据burnside引理:

不同的方案数:I=(C(a1)+C(a2)+...C(ag))/G

这题的情况是需要除以m

但是过程中我们都进行的%p

且(a  /  b) % p = (a%p  /  b%p) %p  是错误的,所以我们要用到逆元(这题因为p是质数,用费马小定理就行)

(a  /  b) % p = (a * inv(b) ) % p = (a % p * inv(b) % p) % p

费马小定理

a^(p-1) ≡1 (mod p)

所以 inv(a) = a^(p-2) (mod p)

// 去吧!皮卡丘! 把AC带回来!
// へ     /|
//   /\7    ∠_/
//   / │   / /
//  │ Z _,< /   /`ヽ
//  │     ヽ   /  〉
//  Y     `  /  /
//  イ● 、 ●  ⊂⊃〈  /
//  ()  へ    | \〈
//   >ー 、_  ィ  │ //
//   / へ   / ノ<| \\
//   ヽ_ノ  (_/  │//
//    7       |/
//    >―r ̄ ̄`ー―_
//**************************************
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define inf 2147483647
const ll INF = 0x3f3f3f3f3f3f3f3fll;
#define ri register int
template <class T> inline T min(T a, T b, T c) { return min(min(a, b), c); }
template <class T> inline T max(T a, T b, T c) { return max(max(a, b), c); }
template <class T> inline T min(T a, T b, T c, T d) {
return min(min(a, b), min(c, d));
}
template <class T> inline T max(T a, T b, T c, T d) {
return max(max(a, b), max(c, d));
}
#define scanf1(x) scanf("%d", &x)
#define scanf2(x, y) scanf("%d%d", &x, &y)
#define scanf3(x, y, z) scanf("%d%d%d", &x, &y, &z)
#define scanf4(x, y, z, X) scanf("%d%d%d%d", &x, &y, &z, &X)
#define pi acos(-1)
#define me(x, y) memset(x, y, sizeof(x));
#define For(i, a, b) for (int i = a; i <= b; i++)
#define FFor(i, a, b) for (int i = a; i >= b; i--)
#define bug printf("***********\n");
#define mp make_pair
#define pb push_back
const int maxn = 3e5 + ;
const int maxx = 1e6 + ;
// name*******************************
int dp[][][];
int a[];
bool flag[];
int num[];
int s1, s2, s3, m, mod;
int tot;
int ans = ;
int sum[];
// function******************************
inline ll qmul(ll a, ll b) {
ll base = a, ans = ;
while (b) {
if (b & 1ll)
ans = (ans * base) % mod;
base = (base * base) % mod;
b >>= 1ll;
}
return ans;
}
//***************************************
int main() {
// ios::sync_with_stdio(0); cin.tie(0);
// freopen("test.txt", "r", stdin);
// freopen("outout.txt","w",stdout);
cin >> s1 >> s2 >> s3 >> m >> mod;
m++;
tot = s1 + s2 + s3;
For(t, , m) {
if (t == m)
For(i, , tot) a[i] = i;
else
For(i, , tot) cin >> a[i];
memset(flag, , sizeof(flag));
memset(num, , sizeof(num));
memset(sum, , sizeof(sum));
int n = ;
For(j, , tot) {
if (!flag[j]) {
int cnt = ;
int p = j;
while (!flag[p]) {
flag[p] = ;
cnt++;
p = a[p];
}
num[++n] = cnt;
sum[n] = sum[n - ] + cnt;
}
}
dp[][][] = ;
For(i, , n) {
For(j, , s1) {
For(k, , s2) {
int l = sum[i] - j - k; //?
if (l < || l > s3)
continue;
int sum = ;
if (j >= num[i])
sum = (sum + dp[i - ][j - num[i]][k]) % mod;
if (k >= num[i])
sum = (sum + dp[i - ][j][k - num[i]]) % mod;
if (l >= num[i])
sum = (sum + dp[i - ][j][k]) % mod;
dp[i][j][k] = sum;
if (i == n)
ans = (ans + dp[i][j][k]) % mod;
}
}
}
}
int x = ans * qmul(m, mod - ) % mod;
cout << x;
return ;
}

P1446 [HNOI2008]Cards的更多相关文章

  1. 洛谷 P1446 [HNOI2008]Cards 解题报告

    P1446 [HNOI2008]Cards 题目描述 小春现在很清闲,面对书桌上的\(N\)张牌,他决定给每张染色,目前小春只有\(3\)种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun ...

  2. luogu P1446 [HNOI2008]Cards

    题目链接 luogu P1446 [HNOI2008]Cards 题解 题意就是求染色方案->等价类 洗牌方式构成成了一个置换群 然而,染色数限制不能用polay定理直接求解 考虑burnsid ...

  3. luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点

    LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...

  4. 洛谷P1446 [HNOI2008]Cards

    置换群+dp #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring& ...

  5. 【bzoj1004】[HNOI2008]Cards

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2928  Solved: 1754[Submit][Sta ...

  6. bzoj 1004 1004: [HNOI2008]Cards burnside定理

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1668  Solved: 978[Submit][Stat ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  9. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

随机推荐

  1. SQL事务在存储过程的应用

    -- ============================================= -- Author: jf_ou -- Create date: 2017-08-22 -- Desc ...

  2. 创建vue项目 webpack+vue

    # 全局安装 vue-cli $ npm install -g vue-cli # 创建一个基于 "webpack" 模板的新项目 根据提示填写项目信息 && 对项 ...

  3. koa 中,中间件异步与同步的相关问题

    同步中间件很容易理解,如以下代码: const Router = require('koa-router') , koa = new Router({ prefix: '/koa' }) , fs = ...

  4. java基础(四) java运算顺序的深入解析

    1. 从左往右的计算顺序   与C/C++不同的是,在Java中,表达式的计算与结果是确定的,不受硬件与环境的影响.如: int i = 5; int j = (i++) + (i++) +(i++) ...

  5. 单机安装hive和presto

    问题: 公司最近在搞presto,主要是分析一下presto和hive的查询大数据量的性能对比: 我先把我的对比图拿出来(50条数据左右)针对同一条sql(select * from employee ...

  6. ansible 一键部署

    start install: rpm   -Uvh   https://mirrors.aliyun.com/epel/epel-release-latest-7.noarch.rpm yum  in ...

  7. SQLSERVER数据库备份操作和还原操作做了什么

    SQLSERVER数据库备份操作和还原操作做了什么 看了这篇文章:还原/备份时做了些什么 自己也测试了一下,下面说的错误日志指的是SQLSERVER ERRORLOG 一般在C:\Program Fi ...

  8. Mac .DS_Store 隐藏文件和清理.DS_Store的方法

    1.清理.DS_Store的方法 输入命令: sudo find / -name ".DS_Store" -depth -exec rm {} \; 2.设置不产生.DS_Stor ...

  9. java多线程读取、操作List集合

    import java.util.ArrayList; import java.util.List; import org.apache.commons.lang3.ArrayUtils;   pub ...

  10. mysql-sql-standard

    https://github.com/zhishutech/mysql-sql-standard