正题

题目链接:https://www.luogu.com.cn/problem/CF280C


题目大意

\(n\)个点的一棵树,每次选择一个没有染色的点把它和它的子树染黑,求期望全部染黑的步数。


解题思路

可以理解为我们按照一个顺序轮流染色,如果一个点有祖先节点在它前面就不用计算贡献。

也就是如果一个点要计算贡献的概率就是它要排在所有它的祖先节点前面,也就是\(\frac{1}{dep_x}\)。求个和就好了。

时间复杂度\(O(n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int N=1e5+10;
int n;double ans;
vector<int> G[N];
void dfs(int x,int fa,int dep){
for(int i=0;i<G[x].size();i++){
int y=G[x][i];
if(y==fa)continue;
dfs(y,x,dep+1);
}
ans+=1.0/(double)dep;
return;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++){
int x,y;
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
dfs(1,0,1);
printf("%.10lf\n",ans);
}

CF280C-Game on Tree【数学期望】的更多相关文章

  1. CF280C Game on tree(期望dp)

    这道题算是真正意义上人生第一道期望的题? 题目大意: 给定一个n个点的,以1号点为根的树,每一次可以将一个点和它的子树全部染黑,求染黑所有点的期望 QwQ说实话,我对期望这种东西,一点也不理解... ...

  2. CF280C Game on Tree

    题目链接 : CF280C Game on Tree 题意 : 给定一棵n个节点的树T 根为一(我咕的翻译漏掉了...) 每次随机选择一个未被删除的点 并将它的子树删除 求删整棵树的期望步数 n ∈ ...

  3. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  4. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  5. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  6. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  7. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  8. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  9. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  10. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

随机推荐

  1. FileUtils 文件工具类

    FileUtils 下载jar中的文件 package com.meeno.chemical.common.utils; import lombok.extern.slf4j.Slf4j; impor ...

  2. WebAPI中controller添加[AllowAnonymous]无效的解决方法

    对于Methods添加[AllowAnonymous]可以进行匿名访问,但是对于Controller添加时无效 public class AuthAttribute : AuthorizationFi ...

  3. Java随手记录

    Spring @Configuration注解及配置方法 转自:https://www.jb51.net/article/184822.htm Spring @Configuration注解 Spri ...

  4. kafka零拷贝机制

    kafka之所以那么快,其中一个很大的原因就是零拷贝(Zero-copy)技术,零拷贝不会kafka的专利,而是操作系统的升级,又比如Netty,也用到了零拷贝. 传统IO kafka的数据是要落入磁 ...

  5. 移动端常用单位——rem

    移动端常用单位: ①px:像素大小,固定值 ②%:百分比 ③em(不常用,但是在首行缩进时可以使用):相对自身的font大小(当自身的字体大小也是em做单位时,才会以父元素的字体大小为基准单位) ④r ...

  6. 收下这7款插件,让你在使用 Vite 的时候如虎添翼

    相信已经有不少小伙伴已经开始用 Vue3 做开发了,也一定使用上 Vite 了,而我今天要介绍的这几款插件,能让你在使用 Vite 做开发时如虎添翼. vite-plugin-restart 通过监听 ...

  7. 主要DL Optimizer原理与Tensorflow相关API

    V(t) = y*V(t-1) + learning_rate*G(x) x(t) = x(t-1) - V(t) 参考:https://arxiv.org/pdf/1609.04747.pdf DL ...

  8. Git最强总结!

    本文已经收录到Github仓库,欢迎大家围观.star.此仓库用于分享Java核心知识,包括Java基础.MySQL.SpringBoot.Mybatis.Redis.RabbitMQ等等,面试必备. ...

  9. Docker 学习目录

    docker 概述 docker是什么 使用最广泛的肉开源容器引擎 其他如rocket,containerd,pouch等容器引擎 一种系统级虚拟化技术 传统的kvm xen,exsi,vmware ...

  10. Robot Framework(9)- 使用变量文件

    如果你还想从头学起Robot Framework,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1770899.html 啥是变量文件 变 ...