正题

题目链接:https://www.luogu.com.cn/problem/P4323


题目大意

给出\(n\)个点的树和加上一个点之后的树(编号打乱)。

求多出来的是哪个点(如果有多少个就输出编号最小的)。

\(1\leq n\leq 10^5\)


解题思路

定义一下\(hash\)值\(P(i)\)

我的做法是\(P(i)=p^i\),\(p\)是一个质数,当然这样好像容易被卡,安全点的做法是用第\(i\)个质数或者直接用复数\(hash\)。

然后定义一下带根的\(hash\)值

\[f_x=\sum_{y\in son_x}f_y\times P(siz_y)
\]

然后换根求出两棵树里面所有点作为根的\(hash\)值,第一棵树里的丢进\(map\)。然后第二棵树里面枚举一下叶子然后算一下去掉之后的\(hash\)值在\(map\)里面匹配(1号点要特判)

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#define ll long long
using namespace std;
const ll N=1e5+10,P=998244353,p=133331;
vector<ll> T[N],G[N];map<ll,bool>mp;
ll n,siz[N],pw[N],f[N],g[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void Dfs1(ll x,ll fa,vector<ll> *T){
siz[x]=f[x]=1;
for(ll i=0;i<T[x].size();i++){
ll y=T[x][i];
if(y==fa)continue;
Dfs1(y,x,T);siz[x]+=siz[y];
(f[x]+=f[y]*pw[siz[y]]%P)%=P;
}
return;
}
void Dfs2(ll x,ll fa,vector<ll> *T){
for(ll i=0;i<T[x].size();i++){
ll y=T[x][i];
if(y==fa)continue;
g[y]=(g[x]-f[y]*pw[siz[y]]%P+P)%P;
(g[y]=f[y]+g[y]*pw[siz[1]-siz[y]]%P)%=P;
Dfs2(y,x,T);
}
return;
}
signed main()
{
scanf("%lld",&n);pw[0]=1;
for(ll i=1;i<=n+1;i++)
pw[i]=pw[i-1]*p%P;
for(ll i=1;i<n;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
}
for(ll i=1;i<=n;i++){
ll x,y;
scanf("%lld%lld",&x,&y);
T[x].push_back(y);
T[y].push_back(x);
}
Dfs1(1,1,G);g[1]=f[1];Dfs2(1,1,G);
for(ll i=1;i<=n;i++)mp[g[i]]=1; Dfs1(1,1,T);g[1]=f[1];
Dfs2(1,1,T);
if(T[1].size()<=1){
ll y=T[1][0];
if(mp[f[y]])
{puts("1");return 0;}
}
for(ll x=2;x<=n+1;x++){
if(T[x].size()>1)continue;
ll y=T[x][0];
ll tmp=(g[y]-pw[1]+P)%P;
if(mp[tmp]){printf("%lld\n",x);return 0;}
}
return 0;
}

P4323-[JSOI2016]独特的树叶【换根dp,树哈希】的更多相关文章

  1. 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市

    P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...

  2. Luogu P4323 [JSOI2016]独特的树叶

    一道比较好的树Hash的题目,提供一种不一样的Hash方法. 首先无根树的同构判断一般的做法只有树Hash,所以不会的同学可以做了Luogu P5043 [模板]树同构([BJOI2015]树的同构) ...

  3. P4323 [JSOI2016]独特的树叶(树哈希)

    传送门 树哈希?->这里 反正大概就是乱搞--的吧-- //minamoto #include<bits/stdc++.h> #define R register #define l ...

  4. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  5. 2018.10.15 NOIP训练 水流成河(换根dp)

    传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...

  6. [JSOI2016]独特的树叶

    https://zybuluo.com/ysner/note/1177340 题面 有一颗大小为\(n\)的树\(A\),现加上一个节点并打乱编号,形成树\(B\),询问加上的节点最后编号是多少? \ ...

  7. 小奇的仓库:换根dp

    一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...

  8. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  9. Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)

    题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...

随机推荐

  1. java和js中for循环的区别

    java中for循环,先执行语句后循环 for (int i=1;i<10;i++){ for(int b=1;b<=i;b++){ System.out.print(b+"*& ...

  2. Spring Boot +Vue 项目实战笔记(一):使用 CLI 搭建 Vue.js 项目

    前言 从这篇文章开始,就进入真正的实践了. 在前端项目开发中,我们可以根据实际情况不同程度地使用 Vue.利用 Vue CLI(或写成 vue-cli,即 Vue 脚手架)搭建出来的项目,是最能体现 ...

  3. mybatis第一个程序随笔

    今天继续学习了解如何写一个mybatis程序 创建了Dao层 1.1 创建一个UserDao接口 1.2 创建UserMapper.xml文件 在mybaits中文手册查找配置信息 <?xml ...

  4. 求方程 p+q+r+s+t=pqrst 的全体自然数解(约定p<=q<=r<=s<=t)

    解:方程左右的表达式分别记为u和v. 由题设有5t>=u. 0本来是不算入自然数的,现在的趋势是把0也算作自然数. 若p=0,则v=0,为使得u=0成立,q.r.s.t都必需为0. 这样就得到方 ...

  5. 快速入门PaddleOCR,并试用其开发一个搜题小工具

    介绍 PaddleOCR 是一个基于百度飞桨的OCR工具库,包含总模型仅8.6M的超轻量级中文OCR,单模型支持中英文数字组合识别.竖排文本识别.长文本识别.同时支持多种文本检测.文本识别的训练算法. ...

  6. bean的作用域和生命周期

    一.Bean作用域 二.生命周期 其中,这个类实现各种接口重写各种方法,会按bean的声明周期按序执行: 其中,自定义的初始化和自定义销毁的方法不是实现接口重写,而是成员方法,并且在装配bean即在x ...

  7. 密码学系列之:bcrypt加密算法详解

    目录 简介 bcrypt的工作原理 bcrypt算法实现 bcrypt hash的结构 hash的历史 简介 今天要给大家介绍的一种加密算法叫做bcrypt, bcrypt是由Niels Provos ...

  8. React项目中应用TypeScript

    一.前言 单独的使用typescript 并不会导致学习成本很高,但是绝大部分前端开发者的项目都是依赖于框架的 例如和vue.react 这些框架结合使用的时候,会有一定的门槛 使用 TypeScri ...

  9. go命令帮助

    Go is a tool for managing Go source code. go-->管理go源码的工具-->管理工具,包含很多功能命令 Usage: go <command ...

  10. 谈谈如何进阶Java高级工程师

    从入门到瓶颈(++文末附学习脑图++) 首先,先自我介绍一下,楼主94年的,四川人,普通大专毕业. 第一阶段 实习阶段 2015年,实习阶段去浙江温州(没错,就是皮革厂的那个地方)找了份软件实施的工作 ...