[数学]高数部分-Part VI 重积分
Part VI 重积分
二重积分的普通对称性
- \(设D关于y轴对称,\iint_{D} f(x,y)d\sigma=\begin{cases} 2\iint_{D_1} f(x,y)d\sigma,若f(-x,y)=f(x,y), 偶\\ 0,若f(-x,y)=-f(x,y),奇 \end{cases}\)
- \(设D关于x轴对称,\iint_{D} f(x,y)d\sigma=\begin{cases} 2\iint_{D_1} f(x,y)d\sigma,若f(x,-y)=f(x,y), 偶\\ 0,若f(x,-y)=-f(x,y),奇 \end{cases}\)
二重积分的轮换对称性(直角坐标系下)
轮换对称性:
\(若将D中的x与y对调,可推出D不变,则:\iint_{D} f(x,y)dxdy=\iint_{D} f(y,x)dxdy,此即为轮换对称性\)
二重积分直角坐标系下的积分方法
\(\iint_{D} f(x,y)d\sigma = \iint_{D} f(x,y)dxdy\)
- \(X型区域(上下型)\int_a^bdx\int_{y_1(x)}^{y_2(x)} f(x,y)dy\)
后积先定限,限内画条线,先交下曲线,后交上曲线 - \(Y型区域(左右型)\int_c^ddy\int_{x_1(y)}^{x_2(y)} f(x,y)dx\)
二重积分极坐标系下的积分方法
\(d\sigma=d\theta\cdot rdr \Rightarrow \iint_Df(x,y)d\sigma =\int_\alpha^\beta d\theta\int_{r_1(\theta)}^{r_2(\theta)} f(rcos{\theta},rsin{\theta})rdr\)
二重积分中值定理
\(f(x,y)在有界闭区域D上连续,\sigma_{0}是D的面积,则在D内至少存在一点(\xi,\mu),使得\iint_{D} f(x,y)d\sigma = f(\xi,\mu)\sigma_{0}\)
[数学]高数部分-Part VI 重积分的更多相关文章
- [数学]高数部分-Part VII 微分方程
Part VII 微分方程 回到总目录 Part VII 微分方程 微分方程的概念 一阶微分方程求解-变量可分离型 一阶微分方程求解-齐次型 一阶微分方程求解-一阶线性型 二阶常系数齐次D.E.求解: ...
- [数学]高数部分-Part III 中值定理与一元微分学应用
Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...
- [数学]高数部分-Part IV 一元函数积分学
Part IV 一元函数积分学 回到总目录 Part IV 一元函数积分学 不定积分定义 定积分定义 不定积分与定积分的几何意义 牛顿-莱布尼兹公式 / N-L 公式 基本积分公式 点火公式(华里士公 ...
- [数学]高数部分-Part V 多元函数微分学
Part V 多元函数微分学 回到总目录 Part V 多元函数微分学 多元函数微分的极限定义 多元函数微分的连续性 多元函数微分的偏导数 z=f(x, y) 多元函数微分-链式求导规则 多元函数-高 ...
- [数学]高数部分-Part I 极限与连续
Part I 极限与连续 回到总目录 Part I 极限与连续 一.极限 泰勒公式 基本微分公式 常用等价无穷小 函数极限定义 数列极限数列极限 极限的性质 极限的唯一性 极限的局部有限性 极限的局部 ...
- 高数解题神器:拍照上传就出答案,这个中国学霸做的AI厉害了 | Demo
一位叫Roger的中国学霸小哥的拍照做题程序mathAI一下子火了,这个AI,堪称数学解题神器. 输入一张包含手写数学题的图片,AI就能识别出输入的数学公式,然后给出计算结果. 不仅加减乘除基本运算, ...
- 期权定价公式:BS公式推导——从高数和概率论角度
嗯,自己看了下书.做了点笔记,做了一些相关的基础知识的补充,尽力做到了详细,这样子,应该上过本科的孩子,只要有高数和概率论基础.都能看懂整个BS公式的推导和避开BS随机微分方程求解的方式的证明了.
- Contest 高数题 樹的點分治 樹形DP
高数题 HJA最近在刷高数题,他遇到了这样一道高数题.这道高数题里面有一棵N个点的树,树上每个点有点权,每条边有颜色.一条路径的权值是这条路径上所有点的点权和,一条合法的路径需要满足该路径上任意相邻的 ...
- 《University Calculus》-chaper13-多重积分-二重积分的计算
之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在<概率论基础教程>中一系列的推导中发挥着很重要的作用. 回想先前关于二重积分的几 ...
随机推荐
- CAD简介
Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modifi ...
- Mybatis相关知识点(二)
Mybatis解决jdbc编程的问题 1. 数据库连接创建.释放频繁造成系统资源浪费从而影响系统性能,如果使用数据库连接池可解决此问题. 解决:在SqlMapConfig.xml中配置数据连接池,使用 ...
- [学习总结]9、Android-Universal-Image-Loader 图片异步加载类库的使用(超详细配置)
这个图片异步加载并缓存的类已经被很多开发者所使用,是最常用的几个开源库之一,主流的应用,随便反编译几个火的项目,都可以见到它的身影. 可是有的人并不知道如何去使用这库如何进行配置,网上查到的信息对于刚 ...
- Oracle 学习PL/SQL
先上一张实用的图:用于转义字符的. SQL> select chr(42) ||'is what?' from dual; CHR(42)||---------*is what? 想转义哪个就转 ...
- alert之后才执行
如果在正常情况下,代码要在alert之后才执行,解决办法:将要执行的代码用setTimeout延迟执行即可(原因:页面未加载完毕)
- 【Java 8】Stream API
转自 Java 8 Stream Java8的两个重大改变,一个是Lambda表达式,另一个就是本节要讲的Stream API表达式.Stream 是Java8中处理集合的关键抽象概念,它可以对集合进 ...
- linux 彻底卸载mysql
1. 停止 mysql 服务: systemctl stop mysqld.service 2. yum remove mysql (因为 之前是通过 yum -y install 方式安装的 ) ...
- 联盛德 HLK-W806 (八): 4线SPI驱动SSD1306/SSD1315 128x64 OLED液晶屏
目录 联盛德 HLK-W806 (一): Ubuntu20.04下的开发环境配置, 编译和烧录说明 联盛德 HLK-W806 (二): Win10下的开发环境配置, 编译和烧录说明 联盛德 HLK-W ...
- gitlab官方api使用
目录 一.简介 二.技术要点 三.案例 一.简介 Gitlab作为一个开源.强大的分布式版本控制系统,已经成为互联网公司.软件开发公司的主流版本管理工具.使用过Gitlab的都知道,想要提交一段代码, ...
- [BUUCTF]REVERSE——[WUSTCTF2020]level2
[WUSTCTF2020]level2 附件 步骤: 例行检查,32位程序,upx壳儿 脱完壳儿,扔进32位ida,习惯性的检索字符串,在我没找到什么关键信息,准备去看main函数的时候,将字符串拉到 ...