目录

Takahashi T, Kurita T. Robust De-noising by Kernel PCA[C]. international conference on artificial neural networks, 2002: 739-744.

这篇文章是基于对Kernel PCA and De-Noisingin Feature Spaces的一个改进。

针对高斯核:

\[k(x,y) = \exp (-\|x-y\|^2/c)
\]

我们希望最小化下式(以找到\(x\)的一个近似的原像):

\[\rho(z) = \|\Phi(z) - P_H \Phi(x)\|^2
\]

获得了一个迭代公式:

\[z(t) = \frac{\sum_{i=1}^N w_i k(x_i, z(t-1))x_i}{\sum_{i=1}^N w_i k(x_i, z(t-1))}
\]

其中\(w_i=\sum_{h=1}^Hy_h u_i^h\),\(u\)通过求解kernel PCA获得(通常是用\(\alpha\)表示的),\(z(0)=x\)。

主要内容

虽然我们可以通过撇去小特征值对应的方向,但是这对于去噪并不足够。Kernel PCA and De-Noisingin Feature Spaces中所提到的方法,也就是上面的那个迭代的公式,也没有很好地解决这个问题。既然\(\{y_h\}\)并没有改变——也就是说,我们可能一直在试图用带噪声的数据去恢复一个不带噪声的数据。

所以,作者论文,在迭代更新过程中,\(y_h\)也应该进行更新。



这样,每一步我们都可以看作是在寻找:

\[\|\Phi(z)-P_H\Phi(\widetilde{x}(t)\|
\]

的最小值。

从\((10)\)可以发现,除非\(\widetilde{x}(t)=z(t-1)\)是\(x\)的一个比较好的估计,否则,通过这种方式很有可能会失败(这里的失败定义为,最后的结果与\(x\)差距甚远)。这种情况我估计是很容易发生的。所以,作者提出了一种新的,更新\(\widetilde{x}(t)\)的公式:



其中\(B(t)\)为确定度,是一个\(M \times M\)的矩阵,定义为:

\[B(t) = diag(\beta_1(t), \ldots, \beta_M(t)) \\
\beta_j(t) = \exp (-(x_j - z_j (t-1))^2/2\sigma_j^2)
\]

对角线元素,反映了\(x_j\)和\(z_j(t-1)\)的差距,如果二者差距不大,说明\(P_H(x)\)和\(x\)的差距不大,\(x\)不是异常值点,所以,结果和\(x\)的差距也不会太大,否则\(x\)会被判定为一个异常值点,自然\(z\)应该和\(x\)的差别大一点。

\(\sigma_j\)的估计是根据另一篇论文来的,这里只给出估计的公式:



\(\mathrm{med}(x)\)表示\(x\)的中位数,\(\varepsilon_{ij}\)表示第\(i\)个训练样本第\(j\)个分量与其重构之间平方误差。话说,这个重构如何获得呢?

Robust De-noising by Kernel PCA的更多相关文章

  1. A ROBUST KERNEL PCA ALGORITHM

    目录 引 主要内容 问题一 问题二 Lu C, Zhang T, Du X, et al. A robust kernel PCA algorithm[C]. international confer ...

  2. Kernel Methods (5) Kernel PCA

    先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...

  3. Kernel PCA 原理和演示

    Kernel PCA 原理和演示 主成份(Principal Component Analysis)分析是降维(Dimension Reduction)的重要手段.每一个主成分都是数据在某一个方向上的 ...

  4. 【模式识别与机器学习】——PCA与Kernel PCA介绍与对比

    PCA与Kernel PCA介绍与对比 1. 理论介绍 PCA:是常用的提取数据的手段,其功能为提取主成分(主要信息),摒弃冗余信息(次要信息),从而得到压缩后的数据,实现维度的下降.其设想通过投影矩 ...

  5. Probabilistic PCA、Kernel PCA以及t-SNE

    Probabilistic PCA 在之前的文章PCA与LDA介绍中介绍了PCA的基本原理,这一部分主要在此基础上进行扩展,在PCA中引入概率的元素,具体思路是对每个数据$\vec{x}_i$,假设$ ...

  6. Kernel PCA and De-Noisingin Feature Spaces

    目录 引 主要内容 Kernel PCA and De-Noisingin Feature Spaces 引 kernel PCA通过\(k(x,y)\)隐式地将样本由输入空间映射到高维空间\(F\) ...

  7. Kernel PCA for Novelty Detection

    目录 引 主要内容 的选择 数值实验 矩形框 spiral 代码 Hoffmann H. Kernel PCA for novelty detection[J]. Pattern Recognitio ...

  8. Missing Data in Kernel PCA

    目录 引 主要内容 关于缺失数据的导数 附录 极大似然估计 代码 Sanguinetti G, Lawrence N D. Missing data in kernel PCA[J]. europea ...

  9. 核化主成分分析(Kernel PCA)应用及调参

    核化这个概念在很多机器学习方法中都有应用,如SVM,PCA等.在此结合sklearn中的KPCA说说核函数具体怎么来用. KPCA和PCA都是用来做无监督数据处理的,但是有一点不一样.PCA是降维,把 ...

随机推荐

  1. 看动画学算法之:二叉搜索树BST

    目录 简介 BST的基本性质 BST的构建 BST的搜索 BST的插入 BST的删除 简介 树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构. 树是由很多个节点组 ...

  2. Hbase(二)【shell操作】

    目录 一.基础操作 1.进入shell命令行 2.帮助查看命令 二.命名空间操作 1.创建namespace 2.查看namespace 3.删除命名空间 三.表操作 1.查看所有表 2.创建表 3. ...

  3. jdk1.6,1.7,1.8解压版无需安装(64位)

    1.java SE 1.6各个版本 jdk http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads ...

  4. LoadRunner中怎么设置密码参数化与用户名关联

    对密码参数化时从parameter里的"Select next row"列表中选择Same Line As这一选项,意思就是每一个密码参数化取值与对应行的用户名关联起来了

  5. LocalDate计算两个日期相差天数

    import org.apache.commons.lang.StringUtils; import java.time.LocalDate; import java.time.ZoneId; imp ...

  6. 记一次 .NET 某妇产医院 WPF内存溢出分析

    一:背景 1. 讲故事 上个月有位朋友通过博客园的短消息找到我,说他的程序存在内存溢出情况,寻求如何解决. 要解决还得通过 windbg 分析啦. 二:Windbg 分析 1. 为什么会内存溢出 大家 ...

  7. DuiLib逆向分析の按钮事件定位

    目录 DuiLib逆向分析の按钮事件定位 0x00 前言 DuiLib介绍 DuiLib安装 DuiLib Hello,World! Duilib逆向分析之定位按钮事件 碎碎念 第一步:获取xml布局 ...

  8. 【划重点】Python遍历列表的四种方法

    一.通过for循环直接遍历 user1 = ["宋江","林冲","卢俊义","吴用"] for user in use ...

  9. [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC

    [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x0 ...

  10. Linux的编译安装、压缩打包、定时任务

    昨日内容回顾 # 1.搭建yum私有仓库 1.安装必须的工具 yum install createrepo yum-utils nginx -y 2.创建目录 mkdir /opt/test 3.创建 ...