Mildenhall B., Srinivasan P. P., Tancik M., Barron J. T., Ramamoorthi R. and Ng R. NeRF: representing scenes as neural radiance fields for view synthesis. In European Conference on Computer Vision (ECCV), 2020.

通过MLP和不同视角的2D图像拟合3Dshape: 引入了positional encoding, 用于捕获高频信息.

主要内容

假设\(\bm{x} = (x, y, z)\)表示一个3D图的位置坐标, \(\bm{d}=(\theta, \phi)\)为观看(拍摄?)角度, 我们希望拟合一个MLP\(F_{\Theta}\)将这个5维的向量映射为该3D物体在\((x, y, z, \theta, \phi)\)处的颜色\(\bm{c}=(r, g, b)\)加上体密度\(\sigma\).

训练的监督信息是不同视角的2D图片, 以及其拍摄的参数.

所以, 对于每一张2D图片可以获得:

\[C(r) = \int_{t_n}^{t_f} T(t) \sigma(\bm{r}(t)) \bm{c}(\bm{r}(t), \bm{d}) \mathrm{d}t,
\]

注: 这些个\(C(r)\)以及体密度之类概念不明白, 看这篇文章只是为了看看positional encoding 怎么发挥作用的, 感兴趣的请回看原文.

对于\(F_{\Theta}\)我们可以估计出:

\[\hat{C}(\bm{r}) = \sum_{i=1}^N T_i (1 - \exp(-\sigma_i \delta_i)) \bm{c}_i,
\]

通过下列损失来更新

\[\mathcal{L} = \sum_{\bm{r}} [\|\hat{C}_c (\bm{r}) - C(\bm{r})\|_2^2 + \|\hat{C}_f (\bm{r}) - C(\bm{r})\|_2^2].
\]

positional encoding

在\((\bm{x}, \bm{d})\)在被喂入\(F_{\Theta}\)之前, 对其进行一个预处理(entry-wise):

\[\gamma(p) = (\sin (2^0 \pi p), \cos (2^0\pi p), \cdots, \sin (2^{L-1}\pi p), \cos(2^{L-1}\pi p)).
\]

\(\gamma (p)^T \gamma(p')\)仅和\(p-p'\)有关? 所以编码了相对信息?

额外的细节

\(\bm{c}\)是视角依赖的, 但是\(\sigma\)不是. 即:

  1. \(\bm{x}\)首先通过一个子网络得到\(\sigma\)和特征\(f\);
  2. 特征\(f\)加上\(\bm{d}\)一起通过另一个子网络得到\(\bm{c}\).

本文还用到了类似重要性的技巧, 不多赘诉了.

代码

原文代码

pytorch3d

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis的更多相关文章

  1. 简单盘点 CVPR2020 的图像合成论文

    前言 本文将简单盘点在 CVPR2020 上的图像合成方面的论文,然后给出下载地址以及开源代码 github(如果有开源). 原文:https://evgenykashin.github.io/202 ...

  2. 深度神经网络入门教程Deep Neural Networks: A Getting Started Tutorial

    Deep Neural Networks are the more computationally powerful cousins to regular neural networks. Learn ...

  3. ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)

    IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...

  4. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  5. Official Program for CVPR 2015

    From:  http://www.pamitc.org/cvpr15/program.php Official Program for CVPR 2015 Monday, June 8 8:30am ...

  6. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  7. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  8. CVPR 2017 Paper list

    CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...

  9. Video processing systems and methods

    BACKGROUND The present invention relates to video processing systems. Advances in imaging technology ...

随机推荐

  1. 用python写的推箱子搜索程序

    1 # -*- coding: gbk -*- 2 from functools import reduce 3 from copy import deepcopy 4 import re 5 def ...

  2. acquaint

    Interpersonal relationships are dynamic systems that change continuously during their existence. Lik ...

  3. 关于redis HSCAN count参数不生效的问题

    这的确是个坑,HSCAN是为了处理大量数据而设计的,可能也是因为这个原因,在数据量较少的情况下count参数并不会生效,具体阈值是多少并没有实际测验过不过可以断定的是一百条数据一下估计是不会生效的.

  4. Hbase(二)【shell操作】

    目录 一.基础操作 1.进入shell命令行 2.帮助查看命令 二.命名空间操作 1.创建namespace 2.查看namespace 3.删除命名空间 三.表操作 1.查看所有表 2.创建表 3. ...

  5. Linux基础命令---lynx浏览器

    lynx lynx是一个字符界面的全功能www浏览器,它没有图形界面,因此占用的资源较少. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法     ...

  6. Copy elision in C++

    Copy elision (or Copy omission) is a compiler optimization technique that avoids unnecessary copying ...

  7. java职业路线图

  8. Tomcat(2):配置Tomcat

    1,打开IDEA创建一个项目 2,配置Tomcat服务器 3,运行 5,成功 t t

  9. 重量级&轻量级

    重量级 就是说包的大小,还有就是与个人项目的耦合程度,重量级的框架与项目耦合程度大些 代表EJB容器的服务往往是"买一送三",不要都不行 轻量级 就是相对较小的包,当然与项目的耦合 ...

  10. java中子类继承父类什么?

    1.继承public和protected修饰的属性和方法,不管子类和父类是否在同一个包: 2.继承默认权限修饰符修饰的属性和方法,前提是子类和父类在同一个包.