Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram Swami, The Limitations of Deep Learning in Adversarial Settings.

利用Jacobian矩阵构造adversarial samples,计算量比较大.

主要内容

目标:

\[\tag{1}
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]

简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).

若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定

\[label(X)=\mathop{\arg \min} \limits_{j} F_j(X).
\]

\(F(X)=Y\)关于\(X\)的Jacobian矩阵为

\[[\frac{\partial F_j(X)}{\partial X_i}]_{i=1,\ldots,N,j=1,\ldots,M},
\]

注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).

因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望

\[t=\mathop{\arg \min} \limits_{j} F_j(X+\delta_X).
\]

作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:

saliency_map的构造之一是:

\[S(X,t)[i] = \{
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]

可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.

alg2, alg3

作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:



其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.

一些有趣的实验指标

Hardness measure





其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.

Adversarial distance



\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量

\[\tag{14}
R(F)=\min_{X,t} A(X,t).
\]

The Limitations of Deep Learning in Adversarial Settings的更多相关文章

  1. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  2. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  3. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  4. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  5. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  8. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. centos服务器上挂载exFat U盘

    有些场景,我们需要在服务器上插入U盘,但是现在的U盘或者移动硬盘,大多都是exFat格式的,有时候linux系统识别不了,可以按照以下方式挂载. 1.安装nux repo(可以不装) yum inst ...

  2. Zookeeper【概述、安装、原理、使用】

    目录 第1章 Zookeeper入门 1.1 概述 1.2 特点 1.3 数据结构 1.4应用场景 第2章 Zookeep安装 2.1 下载地址 2.2 本地模式安装 1. 安装前准备 2. 配置修改 ...

  3. 容器之分类与各种测试(四)——set

    set和multiset的去别在于前者的key值不可以重复,所以用随机数作为其元素进行插入时,遇到重复元素就会被拒绝插入(但是程序不会崩溃). 例程 #include<stdexcept> ...

  4. 转 序列化Serializable和Parcelable的区别详解

    什么是序列化,为什么要进行序列化 答:对象要进行传输(如:activity 与activity间 ,网络间 进程间等等).存储到本地就必须进行序列化 . 这种可传输的状态就是序列化. 怎么序列化??两 ...

  5. spring定时任务执行两次

    最近用Spring的quartz定时器的时候,发现到时间后,任务总是重复执行两次,在tomcat或jboss下都如此. 打印出他们的hashcode,发现是不一样的,也就是说,在web容器启动的时候, ...

  6. 转 【Android】- Android与html5交互操作

    转自:https://blog.csdn.net/baidu_35701759/article/details/70314812 1. Android提供了WebView控件可访问网页 通过webVi ...

  7. javaAPI2

    ---------------------------------------------------------------------------------------------------- ...

  8. Output of C++ Program | Set 2

    Predict the output of below C++ programs. Question 1 1 #include<iostream> 2 using namespace st ...

  9. Linux学习 - fdisk分区

    一.fdisk命令分区过程 系统一旦重启,分区将消失 1 添加新硬盘 直接在虚拟机上添加 2 查看新硬盘 fdisk -l 3 分区 fdisk /dev/sdb fdisk进入/dev/sdb硬件设 ...

  10. Spring Boot项目的不同启动方式

    方式一: 直接通过IntelliJ IDEA启动,直接执行Spring Boot项目的main()方法. 方法二: 将项目打包成jar包,首先需要在pom.xml文件的根节点下添加如下配置: < ...