The Limitations of Deep Learning in Adversarial Settings
概
利用Jacobian矩阵构造adversarial samples,计算量比较大.
主要内容
目标:
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]
简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).
若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定
\]
\(F(X)=Y\)关于\(X\)的Jacobian矩阵为
\]
注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).
因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望
\]
作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:
saliency_map的构造之一是:
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]
可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.
alg2, alg3
作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:
其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.
一些有趣的实验指标
Hardness measure
其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.
Adversarial distance
\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量
R(F)=\min_{X,t} A(X,t).
\]
The Limitations of Deep Learning in Adversarial Settings的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- 零基础学习java------35---------删除一个商品案例,删除多个商品,编辑(修改商品信息),校验用户名是否已经注册(ajax)
一. 删除一个商品案例 将要操作的表格 思路图 前端代码 <%@ page language="java" contentType="text/html; cha ...
- 零基础学习java------day6----数组
0. 内容概览 补充:main方法中的数组 1. 数组的概述 概念: 用来存储一组相同数据类型的集合(或者叫容器) 注意事项: 1. 数组中的元素类型必须一致 2. 数组本身是引用数据类型,但是里面的 ...
- Output of C++ Program | Set 12
Predict the output of following C++ programs. Question 1 1 #include <iostream> 2 using namespa ...
- OC-私有方法,构造方法,类的本质及启动过程
总结 标号 主题 内容 一 OC的私有方法 私有变量/私有方法 二 @property 概念/基本使用/寻找方法的过程/查找顺序 三 @synthesize @synthesize概念/基本使用/注意 ...
- IDEA 使用rest client测试
一.进入 rest 控制台 idea 导航栏 ==> Tools ==> HTTP Client ==> Test RESTFUL Web Service 如图: 一般来说,idea ...
- 【Office】【Excel】将多个工作薄合为一个工作薄
前提:工作薄首行不能有合并的单元格 准备工作:将要合并的工作簿放在一个文件夹里面,文件夹中不能有乱七八糟的东西,只能有你要合并的工作薄 操作步骤:在此文件夹下创建Excel表格并打开,按下alt+F1 ...
- Jenkins配置java项目
目录 一.场景介绍 二.项目配置 配置插件 配置项目 一.场景介绍 在部署完Jenkins后,需要将现有的maven项目(Jenkis的开源插件),放到Jenkins上,用于自动化运维的改造. 项目地 ...
- Python openpyxl的使用
import openpyxl from openpyxl.styles import Font, colors, Alignment wb = openpyxl.load_workbook('C:\ ...
- mysql的MVCC多版本并发控制机制
MVCC多版本并发控制机制 全英文名:Multi-Version Concurrency Control MVCC不会通过加锁互斥来保证隔离性,避免频繁的加锁互斥. 而在串行化隔离级别为了保证较高的隔 ...
- 【C语言】Socket发送HTTP-TCP请求,数据有字符串插入
问题描述: 场景:编写Socket接口,向LOKI发送POST请求查询数据 BUG发现位置:通过cJSON读取时间戳,发现被截断. 现象:通过read()去读取返回的数据,数据行中被插入字符:如下 c ...