Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, Ananthram Swami, The Limitations of Deep Learning in Adversarial Settings.

利用Jacobian矩阵构造adversarial samples,计算量比较大.

主要内容

目标:

\[\tag{1}
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]

简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).

若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定

\[label(X)=\mathop{\arg \min} \limits_{j} F_j(X).
\]

\(F(X)=Y\)关于\(X\)的Jacobian矩阵为

\[[\frac{\partial F_j(X)}{\partial X_i}]_{i=1,\ldots,N,j=1,\ldots,M},
\]

注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).

因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望

\[t=\mathop{\arg \min} \limits_{j} F_j(X+\delta_X).
\]

作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:

saliency_map的构造之一是:

\[S(X,t)[i] = \{
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]

可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.

alg2, alg3

作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:



其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.

一些有趣的实验指标

Hardness measure





其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.

Adversarial distance



\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量

\[\tag{14}
R(F)=\min_{X,t} A(X,t).
\]

The Limitations of Deep Learning in Adversarial Settings的更多相关文章

  1. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  2. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  3. (转)Deep Learning Research Review Week 1: Generative Adversarial Nets

    Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...

  4. 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

    UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS  ICLR 2 ...

  5. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  6. (转) The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...

  7. 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)

    Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...

  8. [C3] Andrew Ng - Neural Networks and Deep Learning

    About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

随机推荐

  1. 零基础学习java------35---------删除一个商品案例,删除多个商品,编辑(修改商品信息),校验用户名是否已经注册(ajax)

    一. 删除一个商品案例 将要操作的表格 思路图  前端代码 <%@ page language="java" contentType="text/html; cha ...

  2. 零基础学习java------day6----数组

    0. 内容概览 补充:main方法中的数组 1. 数组的概述 概念: 用来存储一组相同数据类型的集合(或者叫容器) 注意事项: 1. 数组中的元素类型必须一致 2. 数组本身是引用数据类型,但是里面的 ...

  3. Output of C++ Program | Set 12

    Predict the output of following C++ programs. Question 1 1 #include <iostream> 2 using namespa ...

  4. OC-私有方法,构造方法,类的本质及启动过程

    总结 标号 主题 内容 一 OC的私有方法 私有变量/私有方法 二 @property 概念/基本使用/寻找方法的过程/查找顺序 三 @synthesize @synthesize概念/基本使用/注意 ...

  5. IDEA 使用rest client测试

    一.进入 rest 控制台 idea 导航栏 ==> Tools ==> HTTP Client ==> Test RESTFUL Web Service 如图: 一般来说,idea ...

  6. 【Office】【Excel】将多个工作薄合为一个工作薄

    前提:工作薄首行不能有合并的单元格 准备工作:将要合并的工作簿放在一个文件夹里面,文件夹中不能有乱七八糟的东西,只能有你要合并的工作薄 操作步骤:在此文件夹下创建Excel表格并打开,按下alt+F1 ...

  7. Jenkins配置java项目

    目录 一.场景介绍 二.项目配置 配置插件 配置项目 一.场景介绍 在部署完Jenkins后,需要将现有的maven项目(Jenkis的开源插件),放到Jenkins上,用于自动化运维的改造. 项目地 ...

  8. Python openpyxl的使用

    import openpyxl from openpyxl.styles import Font, colors, Alignment wb = openpyxl.load_workbook('C:\ ...

  9. mysql的MVCC多版本并发控制机制

    MVCC多版本并发控制机制 全英文名:Multi-Version Concurrency Control MVCC不会通过加锁互斥来保证隔离性,避免频繁的加锁互斥. 而在串行化隔离级别为了保证较高的隔 ...

  10. 【C语言】Socket发送HTTP-TCP请求,数据有字符串插入

    问题描述: 场景:编写Socket接口,向LOKI发送POST请求查询数据 BUG发现位置:通过cJSON读取时间戳,发现被截断. 现象:通过read()去读取返回的数据,数据行中被插入字符:如下 c ...