The Limitations of Deep Learning in Adversarial Settings
概
利用Jacobian矩阵构造adversarial samples,计算量比较大.
主要内容
目标:
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]
简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).
若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定
\]
\(F(X)=Y\)关于\(X\)的Jacobian矩阵为
\]
注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).
因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望
\]
作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:
saliency_map的构造之一是:
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]
可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.
alg2, alg3
作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:
其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.
一些有趣的实验指标
Hardness measure
其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.
Adversarial distance
\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量
R(F)=\min_{X,t} A(X,t).
\]
The Limitations of Deep Learning in Adversarial Settings的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- 1小时学会Git玩转GitHub
版权声明:原创不易,本文禁止抄袭.转载,侵权必究! 本次教程建议一边阅读一边用电脑实操 目录 一.了解Git和Github 1.1 什么是Git 1.2 什么是版本控制系统 1.3 什么是Github ...
- 日常Java 2021/10/20
Java提供了一套实现Collection接口的标准集合类 bstractCollection 实现了大部分的集合接口. AbstractList 继承于AbstractCollection并且实现了 ...
- A Child's History of England.8
CHAPTER 3 ENGLAND UNDER THE GOOD SAXON, ALFRED Alfred [born in 849 CE, 唐: 618年-907年] the Great was a ...
- 大数据学习day24-------spark07-----1. sortBy是Transformation算子,为什么会触发Action 2. SparkSQL 3. DataFrame的创建 4. DSL风格API语法 5 两种风格(SQL、DSL)计算workcount案例
1. sortBy是Transformation算子,为什么会触发Action sortBy需要对数据进行全局排序,其需要用到RangePartitioner,而在创建RangePartitioner ...
- express系列(1)概述
在 Node.js 出现之前,前后端的开发必须使用不同的语言进行.为此你需要学习多种的语言和框架.有了 Node.js 之后,你就可以使用一门语言在前后端开发中自由切换,这是最吸引人的地方. 什么是 ...
- Oracle—全局变量
Oracle全局变量 一.数据库程序包全局变量 在程序实现过程中,经常用遇到一些全局变量或常数.在程序开发过程中,往往会将该变量或常数存储于临时表或前台程序的全局变量中,由此带来运行效率降 ...
- Java文件操作(求各专业第一名的学生)
两个文件:info.txt 存放学生基本信息 学号 学院 专业 姓名 1001 计算机学院 软件工程 刘月 1002 生物工程 服装设计 孙丽 score.txt存放分数信息 学号 学科 成绩 100 ...
- Vue API 3 (模板语法 ,指令)
条件 v-if v-if 指令用于条件性地渲染一块内容.这块内容只会在指令的表达式返回 truthy 值的时候被渲染. v-show v-show 指令也是用于根据条件展示一块内容.v-show 只是 ...
- Linux:while read line与for循环的区别
while read line:是一次性将文件信息读入并赋值给变量line , while中使用重定向机制,文件中的所有信息都被读入并重定向给了整个while 语句中的line 变量. for:是每次 ...
- 转:Android preference首选项框架
详解Android首选项框架ListPreference 探索首选项框架 在 深入探讨Android的首选项框架之前,首先构想一个需要使用首选项的场景,然后分析如何实现这一场景.假设你正在编写一个应用 ...