The Limitations of Deep Learning in Adversarial Settings
概
利用Jacobian矩阵构造adversarial samples,计算量比较大.
主要内容
目标:
\mathop{\arg \min} \limits_{\delta_X} \|\delta_X\|, \mathbf{s.t.} \: F(X+\delta_X)=Y^*.
\]
简而言之, 在原图像\(X\)上加一个扰动\(\delta_X\), 使得\(F\)关于\(X+\delta_X\)的预测为\(Y^*\)而非\(Y\).
若\(Y \in \mathbb{R}^M\)是一个\(M\)维的向量, 类别由下式确定
\]
\(F(X)=Y\)关于\(X\)的Jacobian矩阵为
\]
注意, 这里作者把\(X\)看成一个\(N\)维向量(只是为了便于理解).
因为我们的目的是添加扰动\(\delta_X\), 使得\(X+\delta_X\)的标签为我们指定的\(t\), 即我们希望
\]
作者希望改动部分元素, 即\(\|\delta_X\|_0\le \Upsilon\), 作者是构造了一个saliency_map来选择合适的\(i\), 并在其上进行改动, 具体算法如下:
saliency_map的构造之一是:
\begin{array}{ll}
0, & if \: \frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0, \\
\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|, & otherwise.
\end{array}
\]
可以很直观的去理解, 改变标签, 自然希望\(F_t(X)\)增大, 其余部分减少, 故 \(\frac{\partial{F_t(X)}}{\partial X_i} <0 \:or \: \sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i} >0\)所对应的\(X_i\)自然是不重要的, 其余的是重要的, 其重要性用\(\frac{\partial{F_t(X)}}{\partial X_i} |\sum_{j \not= t} \frac{\partial F_j(X)}{\partial X_i}|\)来表示.
alg2, alg3
作者顺便提出了一个更加具体的算法, 应用于Mnist, max_iter 中的\(784\)即为图片的大小\(28 \times 28\), \(\Upsilon=50\), 相当于图片中\(50\%\)的像素发生了改变, 且这里采用了一种新的saliency_map, 其实质为寻找俩个指标\(p,q\)使得:
其实际的操作流程根据算法3. \(\theta\)是每次改变元素的量.
一些有趣的实验指标
Hardness measure
其中\(\epsilon(s,t,\tau)\)中, \(s\):图片标签, \(t\):目标标签, \(\tau\):成功率, \(\epsilon\)为改变像素点的比例. (12)是(11)的一个梯形估计, \(\tau_k\)由选取不同的\(\Upsilon_k\)来确定, \(H(s, t)\)越大说明将类别s改变为t的难度越大.
Adversarial distance
\(A(X,t)\)越大, 说明将图片\(X\)的标签变换至\(t\)的难度越大, 而一个模型的稳定性可以用下式衡量
R(F)=\min_{X,t} A(X,t).
\]
The Limitations of Deep Learning in Adversarial Settings的更多相关文章
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
- Applied Deep Learning Resources
Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- 论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS
UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS ICLR 2 ...
- Towards Deep Learning Models Resistant to Adversarial Attacks
目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...
- (转) The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 Pablo Tue, Dec 6, 2016 in MACHINE LEARNING DEEP LEAR ...
- 博弈论揭示了深度学习的未来(译自:Game Theory Reveals the Future of Deep Learning)
Game Theory Reveals the Future of Deep Learning Carlos E. Perez Deep Learning Patterns, Methodology ...
- [C3] Andrew Ng - Neural Networks and Deep Learning
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep l ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
随机推荐
- HttpClient连接池设置引发的一次雪崩
事件背景 我在凤巢团队独立搭建和运维的一个高流量的推广实况系统,是通过HttpClient 调用大搜的实况服务.最近经常出现Address already in use (Bind failed)的问 ...
- java代码定时备份mysql数据库及注意事项——基于 springboot
源码地址: https://gitee.com/kevin9401/BackUpDataBase git 拉取: https://gitee.com/kevin9401/BackUpDataBase. ...
- velocity示例
创建maven项目 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns ...
- 【Linux】【Services】【SaaS】Docker+kubernetes(1. 基础概念与架构图)
1.简介 1.1. 背景:公司正在进行敏捷开发环境的搭建,以取代传统的架构,好处大大的,我就不赘述了.公司原来负责这个项目的同事要转组,我只好交给另外同事继续,但是为了防止同样的事情,我也需要深入了 ...
- 解决Spring MVC @ResponseBody出现问号乱码问题
原因是SpringMVC的@ResponseBody使用的默认处理字符串编码为ISO-8859-1,而我们前台或者客户端的编码一般是UTF-8或者GBK.现将解决方法分享如下! 第一种方法: 对于需要 ...
- tableau添加参考线
一.将数据窗口切换至分析窗口-点击自定义-参考线 二.出现编辑参考线和参考区间的界面(整个表指的是整个视图,每区指的是如下2018就是一个区,每单元格指的是横轴的最小值) 三.我们分别为每区添加最大值 ...
- [BUUCTF]REVERSE——[GKCTF2020]BabyDriver
[GKCTF2020]BabyDriver 附件 步骤: 例行检查,64位程序,无壳 64位ida载入,检索程序里的字符串,看到提示flag是md5(input),下方还看到了类似迷宫的字符串 找到关 ...
- [BUUCTF]PWN——picoctf_2018_rop chain
picoctf_2018_rop chain 附件 步骤: 例行检查,32位,开启了NX保护 试运行一下程序,看到输入太长数据会崩溃 32位ida载入,习惯性的检索程序里的字符串,看见了flag.tx ...
- [BUUCTF]PWN——level4
level4 附件 步骤: 例行检查,32位程序,开启了NX保护 运行一下程序,看看大概的情况 32位ida载入,首先检索程序里的字符串,根据上一步运行看到的字符串进行跳转 输入点在function里 ...
- Windows异常分发
当有异常发生时,CPU会通过IDT表找到异常处理函数,即内核中的KiTrapXX系列函数,然后转去执行.但是,KiTrapXX函数通常只是对异常做简单的表征和描述,为了支持调试和软件自己定义的异常处理 ...