Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020.

作者改进了PGD攻击方法, 并糅合了不同种类的攻击方法于一体, 使得AA的估计更为有效可靠. 特别是不需要调参.

主要内容

Auto-PGD

Auto-PGD, 其最大的改进的地方就是不需要调节参数(其实作者自己调得比较好啦). 普通的PGD:

\[x^{(k+1)} = P_S (x^{(k)} + \eta^{(k)}\nabla f(x^{(k)})),
\]

其中\(P\)是投影算子, \(\eta\) 是学习率, \(f\)是损失函数.

Momentum

\[z^{(k+1)} = P_S (x^{(k)}+\eta^{(k)}\nabla f(x^{(k)})) \\
x^{(k+1)} = P_S(x^{(k)}+\alpha \cdot (z^{(k+1)}-x^{(k)})+(1-\alpha) \cdot (x^{(k)}-x^{(k-1)})).
\]

注: 作者选择 \(\alpha=0.75\)

Step Size

首先确定总的迭代次数\(N_{iter}\), 然后确定一些检查的结点\(w_0=0, w_1, \cdots, w_n\), 在每一个检查结点检查如下条件

  1. \(\sum_{i={w_{i-1}}}^{w_{i}-1} 1_{f(x^{(i+1)}> f(x^{(i)}))}< \rho \cdot (w_j - w_{j-1})\);

  2. \(\eta^{w_{j-1}}\equiv \eta^{w_j}\) and \(f_{max}^{(w_{j-1})}\equiv f_{max}^{(w_j)}.\)

其中\(f_{max}^{(k)}\)是前\(k\)个结点前的最高的函数值, 若其中条件之一满足, 则对之后的迭代的学习率减半, 即

\[\eta^{(k)}:= \eta^{(w_j)} /2, \forall k=w_j+1, \ldots w_{j+1}.
\]

注: 学习率\(\eta^{(0)}=2\epsilon\).

  1. 条件1是为了检查这一阶段的迭代是否有效(即损失是否升高的次数), 这里作者选择\(\rho=0.75\);
  2. 条件二如果成立了, 说明这一阶段相较于之前的阶段并没有提升, 所以需要减半学习率.

注: 一旦学习率减半了, 作者会令\(x^{(w_j+1)}:=x_{max}\), 从最好的结果处restart.

剩下一个问题是, 如何选择\(w_i\), 作者采取如下方案

\[w_j = [p_jN_{iter}] \le N_{iter} \\
p_{j+1} = p_j + \max \{p_j - p_{j-1} - 0.03, 0.06\}, p_0=0, p_1=0.22.
\]

损失函数

一般来说, 大家用的是交叉熵, 即

\[\mathrm{CE}(x, y) = -\log p_y = -z_y + \log (\sum_{j=1}^K e_{z_j}),
\]

其梯度为

\[\nabla_x \mathrm{CE}(x, y) = (-1 + p_y) \nabla_x z_y + \nabla_{i\not=y} p_i \nabla_xz_i,
\]

若\(p_y\)比较接近于\(1\), 也就是说分类的置信度比较高, 则会导致梯度消失, 而置信度可以单纯通过\(h=\alpha g\)来提高, 即这个损失对scale是敏感的. 替代的损失使用DLR损失

\[\mathrm{DLR} (x, y) = -\frac{z_y -\max_{i \not=y}z_i}{z_{\pi_1}-z_{\pi_3}},
\]

其中\(\pi_i\)是按照从大到小的一个序. 这个损失就能避免scale的影响, 同时还有一个target版本

\[\mathrm{Targeted-DLR}(x, y) = - \frac{z_y-z_t}{z_{\pi_1}- (z_{\pi_3}+z_{\pi_4})/2}.
\]

AutoAttack

AutoAttack糅合了不同的攻击方法:

  • \(\mathrm{APGD_{CE}}\)
  • \(\mathrm{APGD_{DLR}}\)
  • \(\mathrm{FAB}\)
  • \(\mathrm{Square \: Attack}\): black-box

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  4. Certified Adversarial Robustness via Randomized Smoothing

    目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. 壁虎书7 Ensemble Learning and Random Forests

    if you aggregate the predictions of a group of predictors,you will often get better predictions than ...

  9. 生成对抗网络资源 Adversarial Nets Papers

    来源:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers ...

随机推荐

  1. Vue 前端配置多级目录实践(基于Nginx配置方式)

    前情提要 有阵子没更新博客了,因为快年结了工作比较多,这不,最近公司的对外演示环境出现问题这个活儿也落到了我的头上-- 事情是这样的,原来演示环境有很多服务,每个服务都是对外单独开一个端口,比如 ht ...

  2. Hive(六)【分区表、分桶表】

    目录 一.分区表 1.本质 2.创建分区表 3.加载数据到分区表 4.查看分区 5.增加分区 6.删除分区 7.二级分区 8.分区表和元数据对应得三种方式 9.动态分区 二.分桶表 1.创建分桶表 2 ...

  3. 练习1--爬取btc论坛的title和相应的url

    爬不到此论坛的html源码,应该涉及到反爬技术,以后再来解决,代码如下 import requests from lxml import etree import json class BtcSpid ...

  4. 利用python爬取城市公交站点

    利用python爬取城市公交站点 页面分析 https://guiyang.8684.cn/line1 爬虫 我们利用requests请求,利用BeautifulSoup来解析,获取我们的站点数据.得 ...

  5. 【leetcode】451. Sort Characters By Frequency

    Given a string s, sort it in decreasing order based on the frequency of the characters. The frequenc ...

  6. 关于mysql自动备份的小方法

    目前流行几种备份方式:逻辑备份.物理备份.双机热备份.备份脚本的编写等,本文分别从这些方面总结了MySQL自动备份策略的经验和技巧,一起来看看. 目前流行几种备份方式: 一.逻辑备份:使用mysql自 ...

  7. LVS nat模型+dr模型

    nat模型 在 rs1 和 rs2  安装httpd  并配置测试页,启动 [root@rs1 ~]# yum install httpd -y[root@rs1 ~]# echo "thi ...

  8. Spring Boot下使用JSP页面

    一.创建webapp目录 在src/main下创建webapp目录,用于存放jsp文件.这就是一个普通的目录,无需执行Mark Directory As 二.创建jsp 1.指定web资源目录 在sp ...

  9. 【力扣】337. 打家劫舍 III

    在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区.这个地区只有一个入口,我们称之为"根". 除了"根"之外,每栋房子有且只有一个" ...

  10. 玩转 Mockjs,前端也能跑的很溜

    ​ mockjs作用就是,生成随机模拟数据,拦截 ajax 请求,可以对数据进行增删改查.在生成数据时,我们就需要能够熟练使用 mock.js 的语法. Mockjs 的语法规范包括两部分:数据模板定 ...