Croce F. & Hein M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. In International Conference on Machine Learning (ICML), 2020.

作者改进了PGD攻击方法, 并糅合了不同种类的攻击方法于一体, 使得AA的估计更为有效可靠. 特别是不需要调参.

主要内容

Auto-PGD

Auto-PGD, 其最大的改进的地方就是不需要调节参数(其实作者自己调得比较好啦). 普通的PGD:

\[x^{(k+1)} = P_S (x^{(k)} + \eta^{(k)}\nabla f(x^{(k)})),
\]

其中\(P\)是投影算子, \(\eta\) 是学习率, \(f\)是损失函数.

Momentum

\[z^{(k+1)} = P_S (x^{(k)}+\eta^{(k)}\nabla f(x^{(k)})) \\
x^{(k+1)} = P_S(x^{(k)}+\alpha \cdot (z^{(k+1)}-x^{(k)})+(1-\alpha) \cdot (x^{(k)}-x^{(k-1)})).
\]

注: 作者选择 \(\alpha=0.75\)

Step Size

首先确定总的迭代次数\(N_{iter}\), 然后确定一些检查的结点\(w_0=0, w_1, \cdots, w_n\), 在每一个检查结点检查如下条件

  1. \(\sum_{i={w_{i-1}}}^{w_{i}-1} 1_{f(x^{(i+1)}> f(x^{(i)}))}< \rho \cdot (w_j - w_{j-1})\);

  2. \(\eta^{w_{j-1}}\equiv \eta^{w_j}\) and \(f_{max}^{(w_{j-1})}\equiv f_{max}^{(w_j)}.\)

其中\(f_{max}^{(k)}\)是前\(k\)个结点前的最高的函数值, 若其中条件之一满足, 则对之后的迭代的学习率减半, 即

\[\eta^{(k)}:= \eta^{(w_j)} /2, \forall k=w_j+1, \ldots w_{j+1}.
\]

注: 学习率\(\eta^{(0)}=2\epsilon\).

  1. 条件1是为了检查这一阶段的迭代是否有效(即损失是否升高的次数), 这里作者选择\(\rho=0.75\);
  2. 条件二如果成立了, 说明这一阶段相较于之前的阶段并没有提升, 所以需要减半学习率.

注: 一旦学习率减半了, 作者会令\(x^{(w_j+1)}:=x_{max}\), 从最好的结果处restart.

剩下一个问题是, 如何选择\(w_i\), 作者采取如下方案

\[w_j = [p_jN_{iter}] \le N_{iter} \\
p_{j+1} = p_j + \max \{p_j - p_{j-1} - 0.03, 0.06\}, p_0=0, p_1=0.22.
\]

损失函数

一般来说, 大家用的是交叉熵, 即

\[\mathrm{CE}(x, y) = -\log p_y = -z_y + \log (\sum_{j=1}^K e_{z_j}),
\]

其梯度为

\[\nabla_x \mathrm{CE}(x, y) = (-1 + p_y) \nabla_x z_y + \nabla_{i\not=y} p_i \nabla_xz_i,
\]

若\(p_y\)比较接近于\(1\), 也就是说分类的置信度比较高, 则会导致梯度消失, 而置信度可以单纯通过\(h=\alpha g\)来提高, 即这个损失对scale是敏感的. 替代的损失使用DLR损失

\[\mathrm{DLR} (x, y) = -\frac{z_y -\max_{i \not=y}z_i}{z_{\pi_1}-z_{\pi_3}},
\]

其中\(\pi_i\)是按照从大到小的一个序. 这个损失就能避免scale的影响, 同时还有一个target版本

\[\mathrm{Targeted-DLR}(x, y) = - \frac{z_y-z_t}{z_{\pi_1}- (z_{\pi_3}+z_{\pi_4})/2}.
\]

AutoAttack

AutoAttack糅合了不同的攻击方法:

  • \(\mathrm{APGD_{CE}}\)
  • \(\mathrm{APGD_{DLR}}\)
  • \(\mathrm{FAB}\)
  • \(\mathrm{Square \: Attack}\): black-box

Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks的更多相关文章

  1. Improving Adversarial Robustness via Channel-Wise Activation Suppressing

    目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...

  2. Improving Adversarial Robustness Using Proxy Distributions

    目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...

  3. Second Order Optimization for Adversarial Robustness and Interpretability

    目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...

  4. Certified Adversarial Robustness via Randomized Smoothing

    目录 概 主要内容 定理1 代码 Cohen J., Rosenfeld E., Kolter J. Certified Adversarial Robustness via Randomized S ...

  5. IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES

    目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...

  6. Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. 壁虎书7 Ensemble Learning and Random Forests

    if you aggregate the predictions of a group of predictors,you will often get better predictions than ...

  9. 生成对抗网络资源 Adversarial Nets Papers

    来源:https://github.com/zhangqianhui/AdversarialNetsPapers AdversarialNetsPapers The classical Papers ...

随机推荐

  1. HashMap有几种遍历方法?推荐使用哪种?

    本文已收录<面试精选>系列,Gitee 开源地址:https://gitee.com/mydb/interview HashMap 的遍历方法有很多种,不同的 JDK 版本有不同的写法,其 ...

  2. day04 sersync实时同步和ssh服务

    day04 sersync实时同步和ssh服务 sersync实时同步 1.什么是实时同步 实时同步是一种只要当前目录发生变化则会触发一个事件,事件触发后会将变化的目录同步至远程服务器. 2.为什么使 ...

  3. 【STM8】STM8S介绍(编程环境、烧录、芯片内容)(Vcap需要一个电容接地)

    这篇博客的介绍大纲 [1]我使用的开发板和烧录器 [2]编程环境 [3]烧录软件和界面 [4]芯片内容 [1]我使用的开发板和烧录器 首先,我用的是STM8S003F3P6这款开发板,淘宝上就有了,5 ...

  4. JDK1.8新特性(一): 接口的默认方法default

    前言 今天在学习mysql分区优化时,发现一个博客专家大神,对其发布的文章简单学习一下: 一:简介 我们通常所说的接口的作用是用于定义一套标准.约束.规范等,接口中的方法只声明方法的签名,不提供相应的 ...

  5. Objective-C运行时定义了几种重要的类型

    Objective-C运行时定义了几种重要的类型. Class:定义Objective-C类 Ivar:定义对象的实例变量,包括类型和名字. Protocol:定义正式协议. objc_propert ...

  6. CentOS 初体验三: Yum 安装、卸载软件

    一:Yum 简介 Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指 ...

  7. springboot+vue集成mavon-editor,开发在线文档知识库

    先睹为快,来看下效果: 技术选型 SpringBoot.Spring Security.Oauth2.Vue-element-admin 集成mavon-editor编辑器 安装 mavon-edit ...

  8. Google Guava 常用集合方法

    /** * Author: momo * Date: 2018/6/7 * Description: */ public class ListTest { public static void mai ...

  9. java实现文件压缩

    java实现文件压缩:主要是流与流之间的传递 代码如下: package com.cst.klocwork.service.zip; import java.io.File; import java. ...

  10. Java 设计模式--策略模式,枚举+工厂方法实现

    如果项目中的一个页面跳转功能存在10个以上的if else判断,想要做一下整改 一.什么是策略模式 策略模式是对算法的包装,是把使用算法的责任和算法本身分割开来,委派给不同的对象管理,最终可以实现解决 ...