Co-prime

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3313    Accepted Submission(s): 1286

Problem Description
Given a number N, you are asked to count the number of integers between A and B inclusive which are relatively prime to N.
Two integers are said to be co-prime or relatively prime if they have no common positive divisors other than 1 or, equivalently, if their greatest common divisor is 1. The number 1 is relatively prime to every integer.
 
Input
The first line on input contains T (0 < T <= 100) the number of test cases, each of the next T lines contains three integers A, B, N where (1 <= A <= B <= 1015) and (1 <=N <= 109).
 
Output
For each test case, print the number of integers between A and B inclusive which are relatively prime to N. Follow the output format below.
 
Sample Input
2
1 10 2
3 15 5
 
Sample Output
Case #1: 5
Case #2: 10

Hint

In the first test case, the five integers in range [1,10] which are relatively prime to 2 are {1,3,5,7,9}.

 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1434 1502 4136 4137 4138 
思路:素数打表+容斥原理;
因为要求在[n,m]中与互质的数的个数。
先打表求素数,然后分解k,求出k由哪些素数组成,然后我们可以用容斥求出[n,m]中与k不互质的数,然后区间长度减下即可;
每个数的质因数个数不会超过20个。
  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<stdlib.h>
5 #include<string.h>
6 #include<vector>
7 #include<queue>
8 #include<stack>
9 using namespace std;
10 long long gcd(long long n,long long m);
11 bool prime[100005];
12 int ans[100005];
13 int bns[100005];
14 int dd[100005];
15 typedef long long LL;
16 int main(void)
17 {
18 int i,j,k;
19 scanf("%d",&k);
20 int s;
21 LL n,m,x;
22 for(i=2; i<=1000; i++)
23 {
24 if(!prime[i])
25 {
26 for(j=i; i*j<=100000; j++)
27 {
28 prime[i*j]=true;
29 }
30 }
31 }
32 int cnt=0;
33 for(i=2; i<=100000; i++)
34 {
35 if(!prime[i])
36 {
37 ans[cnt++]=i;
38 }
39 }
40 for(s=1; s<=k; s++)
41 {
42 int uu=0;
43 memset(dd,0,sizeof(dd));
44 scanf("%lld %lld %lld",&n,&m,&x);
45 while(x>=1&&uu<cnt)
46 {
47 if(x%ans[uu]==0)
48 {
49 dd[ans[uu]]=1;
50 x/=ans[uu];
51 }
52 else
53 {
54 uu++;
55 }
56 }
57 int qq=0;
58 for(i=2; i<=100000; i++)
59 {
60 if(dd[i])
61 {
62 bns[qq++]=i;
63 }
64 }
65 if(x!=1)
66 bns[qq++]=x;
67 n--;
68
69 LL nn=0;
70 LL mm=0;
71 for(i=1; i<=(1<<qq)-1; i++)
72 {
73 int xx=0; LL sum=1;
74 int flag=0;
75 for(j=0; j<qq; j++)
76 {
77 if(i&(1<<j))
78 {
79 xx++;
80 LL cc=gcd(sum,bns[j]);
81 sum=sum/cc*bns[j];
82 if(sum>m)
83 {
84 flag=1;
85 break;
86 }
87 }
88 }
89 if(flag)
90 continue;
91 else
92 {
93 if(xx%2==0)
94 {
95 nn-=n/sum;
96 mm-=m/sum;
97 }
98 else
99 {
100 nn+=n/sum;
101 mm+=m/sum;
102 }
103 }
104 }m-=mm;n-=nn;
105 printf("Case #%d: ",s);
106 printf("%lld\n",m-n);
107 }
108 return 0;
109 }
110 long long gcd(long long n,long long m)
111 {
112 if(m==0)
113 return n;
114 else if(n%m==0)
115 return m;
116 else return gcd(m,n%m);
117 }
 

Co-prime(hdu4135)的更多相关文章

  1. [HDU4135]CO Prime(容斥)

    也许更好的阅读体验 \(\mathcal{Description}\) \(t\)组询问,每次询问\(l,r,k\),问\([l,r]\)内有多少数与\(k\)互质 \(0<l<=r< ...

  2. 【hdu4135】【hdu2841】【hdu1695】一类通过容斥定理求区间互质的方法

    [HDU4135]Co-prime 题意 给出三个整数N,A,B.问在区间[A,B]内,与N互质的数的个数.其中N<=10^9,A,B<=10^15. 分析 容斥定理的模板题.可以通过容斥 ...

  3. Java 素数 prime numbers-LeetCode 204

    Description: Count the number of prime numbers less than a non-negative number, n click to show more ...

  4. Prime Generator

    Peter wants to generate some prime numbers for his cryptosystem. Help him! Your task is to generate ...

  5. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  6. UVa 524 Prime Ring Problem(回溯法)

    传送门 Description A ring is composed of n (even number) circles as shown in diagram. Put natural numbe ...

  7. Sicily 1444: Prime Path(BFS)

    题意为给出两个四位素数A.B,每次只能对A的某一位数字进行修改,使它成为另一个四位的素数,问最少经过多少操作,能使A变到B.可以直接进行BFS搜索 #include<bits/stdc++.h& ...

  8. hdu 5901 count prime & code vs 3223 素数密度

    hdu5901题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5901 code vs 3223题目链接:http://codevs.cn/problem ...

  9. 最小生成树 prime zoj1586

    题意:在n个星球,每2个星球之间的联通需要依靠一个网络适配器,每个星球喜欢的网络适配器的价钱不同,先给你一个n,然后n个数,代表第i个星球喜爱的网络适配器的价钱,然后给出一个矩阵M[i][j]代表第i ...

  10. 最小生成树 prime poj1258

    题意:给你一个矩阵M[i][j]表示i到j的距离 求最小生成树 思路:裸最小生成树 prime就可以了 最小生成树专题 AC代码: #include "iostream" #inc ...

随机推荐

  1. 什么是DDL,DML,DCL

    转载自  https://www.2cto.com/database/201610/555167.html DML.DDL.DCL区别 . 总体解释: DML(data manipulation la ...

  2. 学习java的第二十天

    一.今日收获 1.java完全学习手册第三章算法的3.2排序,比较了跟c语言排序上的不同 2.观看哔哩哔哩上的教学视频 二.今日问题 1.快速排序法的运行调试多次 2.哔哩哔哩教学视频的一些术语不太理 ...

  3. Redis - 1 - linux中使用docker-compose安装Redis - 更新完毕

    0.前言 有我联系方式的那些半吊子的人私信问我:安装Redis有没有更简单的方式,网上那些文章和视频,没找到满意的方法,所以我搞篇博客出来说明一下我的安装方式吧 1.准备工作 保证自己的linux中已 ...

  4. Attempt to invoke virtual method 'boolean java.lang.String.equals(java.lang.Object)' on a null objec

    遇到这个一场折腾了1个小时, 这是系统在解析XML的时候出错, 最后费了好大的劲才发现 XML文件中,<View>  写成小写的 <view> 了. 崩溃啊.......... ...

  5. Mybatis 批量插入

    一.首先对于批量数据的插入有两种解决方案(下面内容只讨论和Mysql交互的情况) 1)for循环调用Dao中的单条插入方法 2)传一个List<Object>参数,使用Mybatis的批量 ...

  6. spring注解-bean生命周期

    https://www.jianshu.com/p/70b935f2b3fe bean的生命周期 bean创建---初始化----销毁的过程 容器管理bean的生命周期 对象创建:容器启动后调用bea ...

  7. Spring(1):Spring介绍

    一,Spring简介: Spring是一个开源框架,它由Rod Johnson创建:它是为了解决企业应用开发的复杂性而创建的 Spring是一个轻量级的控制反转(IOC)和面向切面(AOP)的容器框架 ...

  8. 重新整理 .net core 实践篇——— UseEndpoints中间件[四十八]

    前言 前文已经提及到了endponint 是怎么匹配到的,也就是说在UseRouting 之后的中间件都能获取到endpoint了,如果能够匹配到的话,那么UseEndpoints又做了什么呢?它是如 ...

  9. Mysql的基操

    创建一个数据库   (myschool是数据库名) create database myschool; 删除数据库 drop database myschool 创建一个表:(Student是 表名) ...

  10. ABP VNext框架基础知识介绍(1)--框架基础类继承关系

    在我较早的时候,就开始研究和介绍ABP框架,ABP框架相对一些其他的框架,它整合了很多.net core的新技术和相关应用场景,虽然最早开始ABP框架是基于.net framework,后来也全部转向 ...