bzoj 1296: [SCOI2009]粉刷匠
Description
windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
Input
输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。
Output
输出文件paint.out包含一个整数,最多能正确粉刷的格子数。
Sample Input
111111
000000
001100
Sample Output
HINT
30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。
Source
http://www.lydsy.com/JudgeOnline/problem.php?id=1296
线性dp
#include <stdio.h>
#define MAXN 3000
int f[MAXN][MAXN],sum[MAXN];
int dp[MAXN][MAXN];
char in[MAXN];
int max(int a,int b)
{
if(a>b) return a;
return b;
}
int min(int a,int b)
{
if(a<b) return a;
return b;
}
int main()
{
int k,i,j,n,m,t,l,ans=-;
scanf("%d%d%d",&n,&m,&t);
for(k=;k<=n;k++)
{
scanf("%s",in+);
for(i=;i<=m;i++)
sum[i]=sum[i-]+(in[i]=='');
for(i=;i<=m;i++)
for(j=;j<=m;j++)
{
f[j][i]=;
for(l=;l<j;l++)
{
int cnt=sum[j]-sum[l];
f[j][i]=max(f[j][i],f[l][i-]+max(cnt,j-l-cnt));
}
}
for(i=;i<=t;i++)
{
int cnt=min(m,i);
for(j=;j<=cnt;j++)
dp[k][i]=max(dp[k][i],dp[k-][i-j]+f[m][j]);
}
}
for(i=;i<=t;i++)
ans=max(ans,dp[n][i]);
printf("%d\n",ans);
return ;
}
bzoj 1296: [SCOI2009]粉刷匠的更多相关文章
- BZOJ 1296: [SCOI2009]粉刷匠 分组DP
1296: [SCOI2009]粉刷匠 Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上 ...
- BZOJ 1296: [SCOI2009]粉刷匠( dp )
dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] ) ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...
- bzoj 1296: [SCOI2009]粉刷匠【dp+背包dp】
参考:http://hzwer.com/3099.html 神题神题 其实只要知道思路就有点都不难-- 先对每一行dp,设g[i][j]为这行前i个格子粉刷了k次最大粉刷正确数,随便n^3一下就行 设 ...
- bzoj 1296: [SCOI2009]粉刷匠 动态规划
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- 1296: [SCOI2009]粉刷匠[多重dp]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1919 Solved: 1099[Submit][Statu ...
- 1296: [SCOI2009]粉刷匠
Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...
- [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]
1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2184 Solved: 1259[Submit][Statu ...
- bzoj1296: [SCOI2009]粉刷匠(DP)
1296: [SCOI2009]粉刷匠 题目:传送门 题解: DP新姿势:dp套dp 我们先单独处理每个串,然后再放到全局更新: f[i][k]表示当前串枚举到第i个位置,用了k次机会 F[i][j] ...
- 【BZOJ1296】[SCOI2009]粉刷匠(动态规划)
[BZOJ1296][SCOI2009]粉刷匠(动态规划) 题面 BZOJ 洛谷 题解 一眼题吧. 对于每个串做一次\(dp\),求出这个串刷若干次次能够达到的最大值,然后背包合并所有的结果即可. # ...
随机推荐
- MongoDB主从复制(主从集群 )
1.简介 主从复制是MongoDB最常用的复制方式.这种方式非常灵活,可用于备份.故障恢复.读扩展等. 最基本的设置方式就是建立一个主节点和一个或者多个从节点,每个从节点要知道主节点的地址.运行mon ...
- VS 快捷键
项目相关的快捷键 Ctrl + Shift + B = 生成项目 Ctrl + Alt + L = 显示Solution Explorer(解决方案资源管理器) Shift + Alt+ C = 添加 ...
- PHP语法
* PHP语法 * 常量与变量 * 常量 - 一旦定义并初始化后,值不会改变 * 使用const关键字 const 常量名=常量值 * define(常量名,常量值) * 变量 - "$&q ...
- js 20160810
jquery 获取不到所有相同id 的元素 ,只能获取此id的第一个元素.可以获取所有相同class 的元素
- jquery实现表格的搜索功能
版权声明:作者原创,转载请注明出处! HTML代码如下: <input type="text" id="txt" value="" / ...
- iOS开发-UI 从入门到精通(一)
一.UI概述 (1)UI(User Interface)用户界面,用户能看到的各种各样的页面元素: (2)iOS App = 各种各样的UI控件+业务逻辑和算法: (3)想要开发出一款精美的应用程序, ...
- iOS 杂笔-25(不要用copy修饰NSMutableString)
iOS 杂笔-25(不要用copy修饰NSMutableString) 首先对题目进行简单的解释,我所说的不要用copy修饰NSMutableString不是说完全不可以用.但是要清楚一点,既然使用N ...
- 学习tensorflow之mac上安装tensorflow
背景 听说谷歌的第二代机器学习的框架tensorflow开源了,我也心血来潮去探探大牛的产品.怎奈安装就折腾了一天,现在整理出来备忘. tensorflow官方网站给出的安装步骤很简单: # Only ...
- IRIS数据集的分析-数据挖掘和python入门-零门槛
所有内容都在python源码和注释里,可运行! ########################### #说明: # 撰写本文的原因是,笔者在研究博文“http://python.jobbole.co ...
- HADOOP安装指南-Ubuntu15.10和hadoop2.7.2
Ubuntu15.10中安装hadoop2.7.2安装手册 太初 目录 1. Hadoop单点模式... 2 1.1 安装步骤... 2 0.环境和版本... 2 1.在ubu ...