UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)
本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题。
然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥。
Min-Max 容斥大概讲的就是这样一件事情:对于任意集合 \(S\),\(\max(S)=\sum\limits_{T\subseteq S,T\ne\varnothing}(-1)^{|T|-1}\min(T)\),因为这个式子包含容斥系数 \((-1)^{|T|-1}\) 和集合的 \(\min,\max\),因此被称为 Min-Max 容斥。
证明还算容易,假设 \(S\) 中的元素从小到大依次为 \(a_1,a_2,\cdots,a_n\),考虑每个 \(a_i\) 作为最小值出现的贡献,显然 \(a_n\) 的贡献就是 \(a_n\),因为它只能在 \(T=\{a_n\}\) 中作为最小值,而对于 \(i<n\),\(a_i\) 为 \(T\) 的最小值当且仅当 \(T\) 可以写成 \(\{a_i\}\cup T'\) 的形式,其中 \(T'\subseteq\{a_{i+1},a_{i+2},\cdots,a_n\}\),考虑枚举 \(T'\) 的大小 \(s\),那么共有 \(\dbinom{n-i}{s}\) 个可选的 \(T'\),它们的贡献均为 \((-1)^s\),故总贡献为 \(\sum\limits_{i=0}^{n-i}\dbinom{n-i}{s}(-1)^s=0^{n-i}=0\),故总贡献就是 \(a_n=\max(S)\)。
接下来考虑怎样将 Min-Max 容斥使用到这道题上,我们考虑将所有 *
格子编个号,记 \(t_i\) 为编号为 \(i\) 的 *
格第一次被覆盖的时间,那么题目要求的值即为 \(E(\max\{t_i\})\),我们知道对于这样的集合,\(\max\) 是不太好求的,不过 \(E(\min\{t_i\})\) 非常好求,记 \(C\) 为有多少个 \(1\times 2\) 的矩形包含至少一个 *
格,\(D\) 为总共有多少个 \(1\times 2\) 的矩形(显然 \(D=n(m-1)+m(n-1)\)),那么 \(E(\min\{t_i\})=\dfrac{C}{D}\)。因此考虑套用 Min-Max 容斥,记 \(S\) 为 \(t_i\) 组成的集合所有,那么 \(E(\max(S))=\sum\limits_{T\subseteq S}(-1)^{T-1}E(\min(T))\)。直接枚举子集显然是不行的,不过我们发现 \(E(\min\{t_i\})\) 的表达式中,\(D\) 为定值,而 \(C\) 的范围也不会太大,最多不过 \(1200\),因此我们考虑转而枚举 \(C\) 并预处理所有子集 \(T\) 满足其对应的 \(C\) 为我们枚举的值的贡献之和。这东西怎么预处理呢?就要用到我们一开始说的轮廓线 \(dp\) 了,记 \(dp_{i,j,k,l}\) 为考虑了前 \(i\) 列,第 \(i\) 列考虑到了第 \(j\) 行,轮廓线左侧取/不取的状态为 \(k\),有 \(l\) 个 \(1\times 2\) 的矩形包含了至少一个 \(T\) 中的格子的所有子集 \(T\) 的 \((-1)^{|T|-1}\) 之和。搞清楚状态之后转移应该就比较容易了,具体见代码罢。
时间复杂度 \(n^2m^22^n\)。
最后总结一个小 trick,碰到那种形如求 \(E(\max(S))\) 的题目,如果 \(E(\min(S))\) 比较容易求得,那么可以考虑 Min-Max 容斥。
const int MAXN=6;
const int MAXM=100;
const int MAXP=64;
const int MAXCNT=1200;
const int MOD=998244353;
void inc(int &x,int y){((x+=y)>=MOD)&&(x-=MOD);}
int n,m,inv[MAXCNT+5];char s[MAXN+5][MAXM+5];
int dp[MAXM+5][MAXN+5][MAXP+5][MAXCNT+5];
int main(){
scanf("%d%d",&n,&m);int cnt=n*(m-1)+m*(n-1);inv[1]=1;
for(int i=2;i<=cnt;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
dp[1][1][0][0]=1;if(s[1][1]=='*') dp[1][1][1][0]=MOD-1;
for(int i=1;i<=m;i++) for(int j=1;j<=n;j++)
for(int k=0;k<(1<<n);k++) for(int l=0;l<=cnt;l++){
if(i==m&&j==n) continue;
if(!dp[i][j][k][l]) continue;
int ni=(j==n)?i+1:i,nj=j%n+1,add=0;
if(s[nj][ni]=='*')
inc(dp[ni][nj][k|(1<<nj-1)][l+(ni!=1)+(nj!=1)],MOD-dp[i][j][k][l]);
if((k>>j-1&1)&&(nj!=1)) add++;
if((k>>nj-1&1)) add++;
inc(dp[ni][nj][k&(~(1<<nj-1))][l+add],dp[i][j][k][l]);
}
int ans=0;
for(int i=1;i<=cnt;i++) for(int j=0;j<(1<<n);j++)
ans=(ans+1ll*dp[m][n][j][i]*inv[i]%MOD*cnt)%MOD;
printf("%d\n",MOD-ans);
return 0;
}
UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)的更多相关文章
- UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp
LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...
- [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
- 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...
- UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】
这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...
- [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP
题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...
- uoj #450[集训队作业2018]复读机
传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...
- UOJ#422. 【集训队作业2018】小Z的礼物
#422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...
- 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物
T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...
随机推荐
- ubuntu20.04 使用root用户登录
1.设置root用户密码 执行 sudo passwd root 然后输入设置的密码,输入两次,这样就完成了设置root用户密码了 2.修改配置文件 执行 sudo vim /usr/share/li ...
- Go语言核心36讲(Go语言进阶技术九)--学习笔记
15 | 关于指针的有限操作 在前面的文章中,我们已经提到过很多次"指针"了,你应该已经比较熟悉了.不过,我们那时大多指的是指针类型及其对应的指针值,今天我们讲的则是更为深入的内容 ...
- DP接口中AUX
背景技术: DP接口(DisplayPort)是一种图像显示接口,它不仅可以支持全高清显示分辨率(1920×1080),还能支持4k分辨率(3840×2160),以及最新的8k分辨率(7680×432 ...
- 电脑cmd命令快速查看连接过的WIFI密码信息
只是突然发现,好奇心作怪,试了一下,妈妈再也不用担心我忘记家里的wifi密码了 1.直接打开"运行"(win键+R) 2.输入CMD 确定 3.输入下面cmd命令.鼠标粘贴 for ...
- cf16E Fish(状压DP)
题意: N只FISH.每个回合会有一只FISH吃掉另一个FISH.直到池塘里只剩一只FISH. 给出aij:第i只FISH吃掉第J只FISH的概率. 问每一只FISH是最后存活者的概率. Input ...
- 记录一次因subprocess PIPE 引起的线上故障
sence:python中使用subprocess.Popen(cmd, stdout=sys.STDOUT, stderr=sys.STDERR, shell=True) ,stdout, stde ...
- Mac sourceTree每次都输入密码
打开终端 依次输入以下三条命令 curl http://github-media-downloads.s3.amazonaws.com/osx/git-credential-osxkeychain - ...
- istio ServiceMesh
什么是ServiceMesh?什么是Istio? 微服务的一种概念,随着微服务的来临,衍生出一系列的问题,比如服务发现.负载均衡.路由.流量控制.服务间通讯的可靠性.微服务的监控等一系列的问题.使用a ...
- CTF-Tools 一款CTF古典密码加解密工具
CTF-Tools 一款CTF古典密码加解密工具 工具截图 工具简介 一款CTF编码.解码.加密.解密工具. 支持的编码解码: URL-UTF-8 URL-GB2312 Unicode Escape( ...
- 大白话讲解如何解决HttpServletRequest的请求参数只能读取一次的问题
大家在开发过程中,可能会遇到对请求参数做下处理的场景,比如读取上送的参数中看调用方上送的系统编号是否是白名单里面的(更多的会用request中获取IP地址判断).需要对请求方上送的参数进行大小写转换或 ...