将$E_{i}$从小到大排序(显然不会相同),假设$E_{p_{i}}$为从小到大第$i$小

此时,必然有$E_{p_{1}}=1$,否则可以将$E_{p_{i}}$都减去$E_{p_{1}}-1$,之后即需要最小化$E_{p_{n}}$

当$p_{i}$确定后,题目中第2个条件即可变为$\forall 1\le i<j\le n,E_{p_{j}}-E_{p_{i}}\ge dist(p_{i},p_{j})$

取$j=i+1$时,即可推出$\forall 1\le i<n,E_{p_{i+1}}-E_{p_{i}}\ge dist(p_{i},p_{i+1})$

另一方面,此时即有$E_{p_{j}}-E_{p_{i}}=\sum_{k=i}^{j-1}E_{p_{k+1}}-E_{p_{k}}\ge \sum_{k=i}^{j-1}dist(p_{k},p_{k+1})\ge dist(p_{i},p_{j})$

(关于最后一个不等号,根据$dist(x,y)\le dist(x,z)+dist(z,y)$即可得到)

换言之,题目中第2个条件等价于$j=i+1$时的条件,那么$E_{p_{n}}$最小值即为$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})+1$

现在,问题即变为确定$p_{i}$,以最小化$E_{p_{n}}$(也即$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})+1$)

考虑将其补上$dist(p_{1},p_{n})$,此时考虑每一条边对答案的贡献,至少为2,且通过令$p_{i}$为dfs序来构造,可取到此下限,即和为$2(n-1)+1$

令$p_{1}$和$p_{n}$为树直径的两个端点,并以$p_{1}$为根优先搜索不包含$p_{n}$的子树即可构造出对应dfs序,令$d$为直径长度,则最终$E_{p_{n}}$即为$2(n-1)+1-d$

另外求$E_{i}$不需要求lca来求$dist(p_{i},p_{i+1})$,由于$\sum_{i=1}^{n-1}dist(p_{i},p_{i+1})$是$o(n)$的,直接在树上暴力移动,并判定其是否是后代即可

另外,题解中还提到了如何$o(n)$实现spj,只需要用桶排来对$p_{i}$排序,并以此判定相邻两者插值是否恰好为其距离即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 struct Edge{
5 int nex,to;
6 }edge[N<<1];
7 int E,n,x,y,head[N],dfn[N],f[N],sz[N],dep[N],P[N],ans[N];
8 bool check(int x,int y){
9 return (dfn[x]<=dfn[y])&&(dfn[y]<dfn[x]+sz[x]);
10 }
11 void add(int x,int y){
12 edge[E].nex=head[x];
13 edge[E].to=y;
14 head[x]=E++;
15 }
16 int dis(int x,int y){
17 int ans=0;
18 while (!check(x,y)){
19 ans++;
20 x=f[x];
21 }
22 while (!check(y,x)){
23 ans++;
24 y=f[y];
25 }
26 return ans;
27 }
28 void dfs(int k,int fa,int s){
29 dfn[k]=++dfn[0];
30 f[k]=fa;
31 sz[k]=1;
32 dep[k]=s;
33 for(int i=head[k];i!=-1;i=edge[i].nex)
34 if (edge[i].to!=fa){
35 dfs(edge[i].to,k,s+1);
36 sz[k]+=sz[edge[i].to];
37 }
38 }
39 void construct(int k,int fa){
40 P[++P[0]]=k;
41 for(int i=head[k];i!=-1;i=edge[i].nex)
42 if ((edge[i].to!=fa)&&(!check(edge[i].to,y)))construct(edge[i].to,k);
43 for(int i=head[k];i!=-1;i=edge[i].nex)
44 if ((edge[i].to!=fa)&&(check(edge[i].to,y)))construct(edge[i].to,k);
45 }
46 int main(){
47 scanf("%d",&n);
48 memset(head,-1,sizeof(head));
49 for(int i=1;i<n;i++){
50 scanf("%d%d",&x,&y);
51 add(x,y);
52 add(y,x);
53 }
54 dfs(1,0,0);
55 x=y=1;
56 for(int i=2;i<=n;i++)
57 if (dep[x]<dep[i])x=i;
58 dfs(x,0,0);
59 for(int i=2;i<=n;i++)
60 if (dep[y]<dep[i])y=i;
61 construct(x,0);
62 ans[P[1]]=1;
63 for(int i=1;i<n;i++)ans[P[i+1]]=ans[P[i]]+dis(P[i],P[i+1]);
64 for(int i=1;i<=n;i++)printf("%d ",ans[i]);
65 }

[ARC117D]Miracle Tree的更多相关文章

  1. Atcoder Regular Contest 117 D - Miracle Tree(分析性质+构造)

    Atcoder 题面传送门 笑死,阴间语文作业到现在还没写完,为了在这个点保持精神,我只好来颓篇题解辣 我们考虑探究一下怎么最小化 \(\max\limits_{i=1}^nE_i\),我们假设 \( ...

  2. QTREE5 - Query on a tree V——LCT

    QTREE5 - Query on a tree V 动态点分治和动态边分治用Qtree4的做法即可. LCT: 换根后,求子树最浅的白点深度. 但是也可以不换根.类似平常换根的往上g,往下f的拼凑 ...

  3. CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths

    CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 好像这个题只能Dsu On Tree? 有根树点分治 统计子树过x的 ...

  4. AT3912 Antennas on Tree

    AT3912 Antennas on Tree %%zzt 只能考虑性质了. 把最后选择的k个点的连通块求出来,连通块内部的点表示都是互异的 连通块外部的点只能形成若干条链,并且这k个点的每一个最多与 ...

  5. CF1055F Tree and XOR

    CF1055F Tree and XOR 就是选择两个数找第k大对儿 第k大?二分+trie上验证 O(nlognlogn) 直接按位贪心 维护可能的决策点(a,b)表示可能答案的对儿在a和b的子树中 ...

  6. [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法

    二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...

  7. SAP CRM 树视图(TREE VIEW)

    树视图可以用于表示数据的层次. 例如:SAP CRM中的组织结构数据可以表示为树视图. 在SAP CRM Web UI的术语当中,没有像表视图(table view)或者表单视图(form view) ...

  8. 无限分级和tree结构数据增删改【提供Demo下载】

    无限分级 很多时候我们不确定等级关系的层级,这个时候就需要用到无限分级了. 说到无限分级,又要扯到递归调用了.(据说频繁递归是很耗性能的),在此我们需要先设计好表机构,用来存储无限分级的数据.当然,以 ...

  9. 2000条你应知的WPF小姿势 基础篇<45-50 Visual Tree&Logic Tree 附带两个小工具>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

随机推荐

  1. [AGC023D] Go Home 题解

    题目传送门 Solution 首先排除掉特殊情况:若 \(S\) 在两侧,肯定会顺序/逆序直接走完,答案就是边界减去出发点. 考虑到若 \(P_1\geq P_n\),那么显然 \(1\) 不到家 \ ...

  2. NX CAM 区域轮廓铣的切削步长

    从NX3.0到NX9.0,默认都是5%.可是实际计算的精确度是不一样的.到NX8.0上发现计算速度特别慢,后来东找西找,设置这个参数可以解决.PS:请慎用!请后后面的官方解释. 官方的解释是: &qu ...

  3. 解决pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.

    参考链接[侵权删] https://www.jianshu.com/p/3378fa827924 https://yq.aliyun.com/articles/619208 问题描述:在Windows ...

  4. 【UE4 设计模式】简单工厂模式 Simple Factory Pattern

    概述 描述 又称为静态工厂方法 一般使用静态方法,根据参数的不同创建不同类的实例 套路 创建抽象产品类 : 创建具体产品类,继承抽象产品类: 创建工厂类,通过静态方法根据传入不同参数从而创建不同具体产 ...

  5. 6. 站在巨人的肩膀学习Java Filter型内存马

    本文站在巨人的肩膀学习Java Filter型内存马,文章里面的链接以及图片引用于下面文章,参考文章: <Tomcat 内存马学习(一):Filter型> <tomcat无文件内存w ...

  6. Java中的函数式编程(八)流Stream并行编程

    写在前面 在本系列文章的第一篇,我们提到了函数式编程的优点之一是"易于并发编程". Java作为一个多线程的语言,它通过 Stream 来提供了并发编程的便利性. 题外话: 严格来 ...

  7. the Agiles Scrum Meeting 12

    会议时间:2020.4.20 21:00 1.每个人的工作 今天已完成的工作 个人结对项目增量开发组: 自动评测系统基本开发完成,实现个人项目自动评测功能 issues: 个人结对功能开发组:开发自动 ...

  8. Noip模拟45 2021.8.21

    一定别删大括号,检查是;还是, ceil函数里面要写double,否则根本没用!!!!!!! T1 打表 正解:打表 考场上很难真正把柿子理解着推出来 况且想要理解题意就很难,比如我就理解错了 半猜着 ...

  9. Noip模拟32(再度翻车) 2021.8.7

    T1 Smooth 很水的一道题...可是最傻    的是考场上居然没有想到用优先队列优化... 上来开题看到这个,最一开始想,这题能用模拟短除法,再一想太慢了,就想着优化 偏偏想到线性筛然后试别的素 ...

  10. 上拉电阻大小对i2c总线的影响

    漏极开路上拉电阻取值为何不能很大或很小? 如果上拉电阻值过小,Vcc灌入端口的电流(Ic)将较大,这样会导致MOS管V2(三极管)不完全导通(Ib*β<Ic),有饱和状态变成放大状态,这样端口输 ...