[luogu4548]歌唱王国
(可以参考hdu4652,因此推导过程比较省略)
类似的定义$f_{i}$和$g_{i}$,同样去插入$len$个字符,但注意到并不是任意一个位置都可以作为结尾,$i+j$可以作为结尾当且仅当$s[0,j)=s[len-j,j)$
令两者生成函数分别为$F(x)$和$G(x)$,则有$G(x)=\sum_{i\in S}m^{i}\frac{F(x)}{x^{i}}$,其中$S=\{i|s[0,i)=s[len-i,len)\}$(根据定义$len\in S$),可以通过kmp或哈希求出
答案即为$G(1)=\sum_{x\in S}m^{x}$,注意对10000取模以及补充前导0
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define mod 10000
5 int n,m,t,ans,a[N],mi[N],nex[N];
6 int main(){
7 scanf("%d%d",&m,&t);
8 mi[0]=1;
9 for(int i=1;i<N-4;i++)mi[i]=1LL*mi[i-1]*m%mod;
10 while (t--){
11 scanf("%d",&n);
12 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
13 nex[0]=nex[1]=0;
14 for(int i=2,j=0;i<=n;i++){
15 while ((j)&&(a[i]!=a[j+1]))j=nex[j];
16 if (a[i]==a[j+1])j++;
17 nex[i]=j;
18 }
19 ans=0;
20 for(int i=n;i;i=nex[i])ans=(ans+mi[i])%mod;
21 if (ans<10)printf("0");
22 if (ans<100)printf("0");
23 if (ans<1000)printf("0");
24 printf("%d\n",ans);
25 }
26 }
[luogu4548]歌唱王国的更多相关文章
- 【BZOJ1152】歌唱王国(生成函数,KMP)
[BZOJ1152]歌唱王国(生成函数,KMP) 题面 BZOJ 洛谷 题解 根据\(YMD\)论文来的QwQ. 首先大家都知道普通型生成函数是\(\displaystyle \sum_{i=0}^{ ...
- [CTSC2006]歌唱王国
[CTSC2006]歌唱王国 Tags:题解 题意 链接:在空串后不断随机添加字符,直到出现串\(S_i\)为止.求最终串的期望长度.\(\sum |S_i|\le 5*10^6\) 题解 以下内容来 ...
- bzoi1152 [CTSC2006]歌唱王国Singleland
[CTSC2006]歌唱王国Singleland Time Limit: 30 Sec Memory Limit: 162 MB Description 在歌唱王国,所有人的名字都是一个非空的仅包含整 ...
- 【题解】歌唱王国(概率生成函数+KMP)+伦讲的求方差
[题解]歌唱王国(概率生成函数+KMP)+伦讲的求方差 生成函数的本质是什么呀!为什么和It-st一样神 设\(f_i\)表示填了\(i\)个时候停下来的概率,\(g_i\)是填了\(i\)个的时候不 ...
- Luogu4548 CTSC2006 歌唱王国 概率生成函数、哈希
传送门 orz ymd 考虑构造生成函数:设\(F(x) = \sum\limits_{i=0}^\infty f_ix^i\),其中\(f_i\)表示答案为\(i\)的概率:又设\(G(x) = \ ...
- 解题:CTSC 2006 歌唱王国
题面 概率生成函数 对于菜鸡博主来说好难啊 其一般形式为$F(x)=\sum\limits_{i=0}^∞[x==i]x_i$,第i项的系数表示离散变量x取值为i的概率 一般的两个性质:$F(1)=1 ...
- 【BZOJ】1152: [CTSC2006]歌唱王国Singleland
题解 读错题了,是最后留下一个牛人首长歌颂他,和其他人没有关系,t就相当于数据组数 结论题,具体可看 https://www.zhihu.com/question/59895916/answer/19 ...
- 洛谷P4548 [CTSC2006]歌唱王国(概率生成函数)
题面 传送门 给定一个长度为\(L\)的序列\(A\).然后每次掷一个标有\(1\)到\(m\)的公平骰子并将其上的数字加入到初始为空的序列\(B\)的末尾,如果序列B中已经出现了给定序列\(A\), ...
- luogu P4548 [CTSC2006]歌唱王国
传送门 这题\(\mathrm{YMD}\)去年就讲了,然而我今年才做(捂脸) 考虑生成函数,设\(f_i\)表示最终串长为\(i\)的概率,其概率生成函数为\(F(x)=\sum f_ix^i\), ...
随机推荐
- 把之前CompletableFuture留下的坑给填上。
你好呀,我是歪歪. 填个坑吧,把之前一直欠着的 CompletableFuture 给写了,因为后台已经收到过好几次催更的留言了. 这玩意我在之前写的这篇文章中提到过:<面试官问我知不知道异步编 ...
- Git学习笔记02-配置
安装好Git之后,做的就是需要配置Git了 第一步,配置自己的名称和邮箱 打开Git Bash 输入命令 git config --global user.name "用户名" g ...
- Hibernate的介绍及入门小案例
1.Hibernate的诞生 在以前使用传统的JDBC开发应用系统时,如果是小型应用系统,并不觉得有什么麻烦,但是对于大型应用系统的开发,使用JDBC就会显得力不从心,例如对几十,几百张包含几十个字段 ...
- 初识Linux shell
目录 初识Linux shell Linux 深入探究Linux内核 系统内存管理 交换空间 页面 换出 软件程序管理 Linux中的进程 Linux系统的运行级 硬件设备管理 插入设备驱动代码的方法 ...
- C11 (GNU Dialect) -std=gnu11 和 -std=c11
C11 (GNU Dialect) -std=gnu11 和 -std=c11 C11 (GNU Dialect) -std=gnu11 和 -std=c11 用于 IntelliSense 的 C ...
- C++ 与 Visual Studio 2019 和 WSL(四)——库组件
C++ 与 Visual Studio 2019 和 WSL (库组件) Reference 在 C++ 项目中使用库和组件 | Microsoft Docs 演练:创建和使用自己的动态链接库 (C+ ...
- 如何访问位于内网的Ubuntu主机
如何访问位于内网的Ubuntu主机 内网主机为Ubuntu桌面版 内网主机Ubuntu字符串界面版 SSH远程主机管理工具推荐 SSH远程文件访问工具推荐 如何访问位于内网的Ubuntu主机 内网主机 ...
- Java中的函数式编程(六)流Stream基础
写在前面 如果说函数式接口和lambda表达式是Java中函数式编程的基石,那么stream就是在基石上的最富丽堂皇的大厦. 只有熟悉了stream,你才能说熟悉了Java 的函数式编程. 本文主要介 ...
- 使用Mybatis的TypeHandler加解密数据
使用Mybatis的TypeHandler加解密数据 一.背景 二.解决方案 三.需求 四.实现思路 1.编写一个实体类,凡是此实体类的数据都表示需要加解密的 2.编写一个加解密的`TypeHandl ...
- python +spatialite + window 解决方案(https://www.jianshu.com/p/5bc7d8b7b429)
运行环境在windows 10 64bit.先将python安装完成.然后,到 spatilite官网 找到MS(即Microsoft)版本,下载64位的mod_spatialite,将其先解压到目标 ...