首先,可以通过将所有$x_{i}=0$都选择第1类,其余选第2类,构造出一个以$(0,0)$和$(1,h)$为左下角和右上角的矩形,答案即为$2h+2$,类似地还可以构造出$2w+2$

若最终的矩形不包含与$x=\frac{w}{2}$或$y=\frac{h}{2}$,那么意味着答案不超过$w+h$,而上面的构造得到了答案$2\max(w,h)+2$的下限,因此一定不优

接下来,我们分别考虑与$x=\frac{w}{2}$有交和与$y=\frac{h}{2}$有交的答案,取max即可

以$y=\frac{h}{2}$为例,暴力枚举右端点的$x$(记作$x_{i}$),即找到$j$,并最大化$x_{i}-x_{j}+\Delta y_{j+1,i-1}$(其中$\Delta y_{i,j}$指对应的最小的$y$坐标差,即$\min_{i\le k\le j,y_{k}>\frac{h}{2}}y_{k}-\max_{i\le k\le j,y_{k}\le \frac{h}{2}}y_{k}$)

(关于$\Delta y_{i,j}$中若存在$i\le k\le j$且$y_{k}=\frac{h}{2}$,看上去会有两种可能,但一定不优,任取即可)

$x_{i}$是关于$i$的常数,即要求最大化$\Delta y_{j+1,i-1}-x_{j}$,注意到每一次增加$i$也就是对$\Delta y_{j+1,i-1}$执行区间修改,修改的区间个数恰好与单调栈弹出数相同,用线段树来维护$\Delta y_{j+1,i-1}-x_{j}$最大值即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define oo 0x3f3f3f3f
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 #define fi first
9 #define se second
10 stack<int>st[2];
11 pair<int,int>a[N];
12 int n,w,h,ans,f[N<<2],tag[N<<2];
13 void upd(int k,int x){
14 tag[k]+=x;
15 f[k]+=x;
16 }
17 void down(int k){
18 upd(L,tag[k]);
19 upd(R,tag[k]);
20 tag[k]=0;
21 }
22 void update(int k,int l,int r,int x,int y,int z){
23 if ((l>y)||(x>r))return;
24 if ((x<=l)&&(r<=y)){
25 upd(k,z);
26 return;
27 }
28 down(k);
29 update(L,l,mid,x,y,z);
30 update(R,mid+1,r,x,y,z);
31 f[k]=max(f[L],f[R]);
32 }
33 void calc(){
34 sort(a+1,a+n+1);
35 while (!st[0].empty())st[0].pop();
36 st[0].push(0);
37 while (!st[1].empty())st[1].pop();
38 st[1].push(0);
39 memset(tag,0,sizeof(tag));
40 memset(f,0,sizeof(f));
41 upd(1,-oo);
42 int hh=h/2;
43 for(int i=1;i<=n;i++){
44 update(1,1,n,i,i,oo+h-a[i-1].fi);
45 ans=max(ans,a[i].fi+f[1]);
46 int p=(a[i].se>hh),las=i,x=abs(a[i].se-hh)-abs(p*h-hh);
47 while (1){
48 update(1,1,n,st[p].top()+1,las,x);
49 las=st[p].top();
50 x=abs(a[i].se-hh)-abs(a[las].se-hh);
51 if ((!las)||(x>0))break;
52 st[p].pop();
53 }
54 st[p].push(i);
55 }
56 ans=max(ans,w+max(f[1],h-a[n].fi));
57 }
58 int main(){
59 scanf("%d%d%d",&w,&h,&n);
60 for(int i=1;i<=n;i++)scanf("%d%d",&a[i].fi,&a[i].se);
61 calc();
62 swap(w,h);
63 for(int i=1;i<=n;i++)swap(a[i].fi,a[i].se);
64 calc();
65 printf("%d",2*ans);
66 }

[atARC063F]Snuke's Coloring 2的更多相关文章

  1. [Arc063F] Snuke's Coloring 2

    [Arc063F] Snuke's Coloring 2 题目大意 给你一个网格图,一些点上有标记,求边长最大空白矩形. 试题分析 专门卡\(\log^2 n\)系列. 首先由题意我们可以找到答案的下 ...

  2. 【ARC 063F】Snuke's Coloring 2

    Description There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper ...

  3. すぬけ君の塗り絵 / Snuke's Coloring AtCoder - 2068 (思维,排序,贡献)

    Problem Statement We have a grid with H rows and W columns. At first, all cells were painted white. ...

  4. Snuke's Coloring 2-1

    There is a rectangle in the xy-plane, with its lower left corner at (0,0) and its upper right corner ...

  5. AtCoder Regular Contest 063 F : Snuke’s Coloring 2 (线段树 + 单调栈)

    题意 小 \(\mathrm{C}\) 很喜欢二维染色问题,这天他拿来了一个 \(w × h\) 的二维平面 , 初始时均为白色 . 然后他在上面设置了 \(n\) 个关键点 \((X_i , Y_i ...

  6. 2018.09.22 atcoder Snuke's Coloring 2(线段树+单调栈)

    传送门 就是给出一个矩形,上面有一些点,让你找出一个周长最大的矩形,满足没有一个点在矩形中. 这个题很有意思. 考虑到答案一定会穿过中线. 于是我们可以把点分到中线两边. 先想想暴力如何解决. 显然就 ...

  7. 2018.09.19 atcoder Snuke's Coloring(思维题)

    传送门 谁能想到这道题会写这么久. 本来是一道很sb的题啊. 就是每次选一个点只会影响到周围的九个方格,随便1e9进制就可以hash了,但是我非要作死用stl写. 结果由于技术不够高超,一直调不出来. ...

  8. [arc063F]Snuke's Coloring 2-[线段树+观察]

    Description 传送门 Solution 我们先不考虑周长,只考虑长和宽. 依题意得答案下限为max(w+1,h+1),并且最后所得一定是个矩形(矩形内部无点). 好的,所以!!!答案一定会经 ...

  9. ARC063F すぬけ君の塗り絵 2 / Snuke's Coloring 2

    题面 一句话题面:给你一些点,求这些点之中夹的最大的矩形周长.(考虑边界) Solution 首先是一个结论,答案矩形一定经过\(x=\frac{w}{2}\)或经过\(y=\frac{h}{2}\) ...

随机推荐

  1. 易华录 X ShardingSphere|葫芦 App 后台数据处理的逻辑捷径

    "ShardingSphere 大大简化了分库分表的开发和维护工作,对于业务的快速上线起到了非常大的支撑作用,保守估计 ShardingSphere 至少为我们节省了 4 个月的研发成本.& ...

  2. gin 跨域问题

    package middlewares import ( "github.com/gin-gonic/gin" "net/http" ) func Cors() ...

  3. Python内置高阶函数map()

    map()函数map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. 例如,对于lis ...

  4. 内网渗透DC-4靶场通关

    个人博客:点我 DC系列共9个靶场,本次来试玩一下DC-4,只有一个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware可能存在兼容性问题.靶场推荐使用 ...

  5. 【c++ Prime 学习笔记】第15章 面向对象程序设计

    15.1 OOP:概述 面向对象程序设计(object-oriented programming)的核心思想是:数据抽象.继承.动态绑定 使用数据抽象,可将类的接口与实现分离 使用继承,可定义相似的类 ...

  6. [no_code][Alpha]发布声明报告

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 2020春季计算机学院软件工程(罗杰 任健) 作业要求 发布声明 我们在这个课程的目标是 设计出一个OCR表单处理软件 这个作业在哪个具体方面 ...

  7. Noip模拟68 2021.10.4

    T1 玩水 成功在考试的时候注释掉正解,换成了暴力,只因为不敢保证正解思路的正确 脑子瓦特了,不知道把暴力打成函数拼在一起,不知道当时咋想的.... 就是你找有没有一个点上面和左面的字符一样, 如果这 ...

  8. 2021.8.5考试总结[NOIP模拟31]

    暴力打满直接rk3? T1 Game 想了一万种贪心和两万种$hack$. 可以先用最显然的贪心求出最高得分是多少.(从小到大用最小的大于$b_i$的$a$得分) 然后用一棵权值线段树维护值域内$a$ ...

  9. Exynos4412 中断处理流程详解

    Linux 中,当外设触发中断后,大体处理流程如下: a -- 具体CPU architecture相关的模块会进行现场保护,然后调用machine driver对应的中断处理handler; b - ...

  10. [LGP2758]编辑距离

    目录 题目 题目描述 输入格式 输出格式 输入输出样例 题目分析 状态转移方程 初始状态 结束状态 Code 题目 题目描述 设A和B是两个字符串.我们要用最少的字符操作次数,将字符串A转换为字符串B ...