这是一道裸的第二类区间DP(由已知区间向外扩展)题。

首先定义 \(f_{i,j}\) 为最后 \(j-i+1\) 个数取 \([i,j]\) 这个区间时,\([i,j]\) 这个区间可以产生的最大价值。那么根据定义,\(f_{i,i}=n*a_i\) 。

然后我们枚举区间长度长度,这样保证长度为 \(k+1\) 的区间可以被长度为 \(k\) 的区间向左右扩展得出。

容易写出向外扩展的状态转移方程是 \(f_{i,j}=\text{max}(f_{i+1,j}+(n-k+1)*a_i
,f_{i,j-1}+(n-k+1)*a_j)\)

没了。

代码:

#include<stdio.h>
#define reg register
#define ri reg int
#define rep(i, x, y) for(ri i = x; i <= y; ++i)
#define nrep(i, x, y) for(ri i = x; i >= y; --i)
#define DEBUG 1
#define ll long long
#define il inline
#define swap(a, b) ((a) ^= (b) ^= (a) ^= (b))
#define max(i, j) (i) > (j) ? (i) : (j)
#define min(i, j) (i) < (j) ? (i) : (j)
#define read(i) io.READ(i)
#define print(i) io.WRITE(i)
#define push(i) io.PUSH(i)
struct IO {
#define MAXSIZE (1 << 20)
#define isdigit(x) (x >= '0' && x <= '9')
char buf[MAXSIZE], *p1, *p2;
char pbuf[MAXSIZE], *pp;
#if DEBUG
#else
IO() : p1(buf), p2(buf), pp(pbuf) {}
~IO() {
fwrite(pbuf, 1, pp - pbuf, stdout);
}
#endif
inline char gc() {
#if DEBUG
return getchar();
#endif
if(p1 == p2)
p2 = (p1 = buf) + fread(buf, 1, MAXSIZE, stdin);
return p1 == p2 ? ' ' : *p1++;
}
inline bool blank(char ch) {
return ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t';
}
template <class T>
inline void READ(T &x) {
register double tmp = 1;
register bool sign = 0;
x = 0;
register char ch = gc();
for(; !isdigit(ch); ch = gc())
if(ch == '-') sign = 1;
for(; isdigit(ch); ch = gc())
x = x * 10 + (ch - '0');
if(ch == '.')
for(ch = gc(); isdigit(ch); ch = gc())
tmp /= 10.0, x += tmp * (ch - '0');
if(sign) x = -x;
}
inline void READ(char *s) {
register char ch = gc();
for(; blank(ch); ch = gc());
for(; !blank(ch); ch = gc())
*s++ = ch;
*s = 0;
}
inline void READ(char &c) {
for(c = gc(); blank(c); c = gc());
}
inline void PUSH(const char &c) {
#if DEBUG
putchar(c);
#else
if(pp - pbuf == MAXSIZE) {
fwrite(pbuf, 1, MAXSIZE, stdout);
pp = pbuf;
}
*pp++ = c;
#endif
}
template <class T>
inline void WRITE(T x) {
if(x < 0) {
x = -x;
PUSH('-');
}
static T sta[35];
T top = 0;
do {
sta[top++] = x % 10;
x /= 10;
} while(x);
while(top)
PUSH(sta[--top] + '0');
}
template <class T>
inline void WRITE(T x, char lastChar) {
WRITE(x);
PUSH(lastChar);
}
} io;
int n, a[2010], f[2010][2010];
int main(){
read(n);
rep(i, 1, n) read(a[i]), f[i][i] = a[i] * n;
rep(k, 1, n) {
rep(i, 1, n - k + 1) {
ri j = i + k - 1;
f[i][j] = max(f[i + 1][j] + (n - k + 1) * a[i], f[i][j - 1] + (n - k + 1) * a[j]);
}
}
print(f[1][n]);
return 0;
}

洛谷P2858题解的更多相关文章

  1. [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

    [洛谷P3376题解]网络流(最大流)的实现算法讲解与代码 更坏的阅读体验 定义 对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量.假设出发点S水流无限大,求水流到终点T后的最大流量. 起 ...

  2. [洛谷p2858] 奶牛零食

    题目链接: 点我 题目分析: 这是什么,区间dp吗?怎么大佬都在说区间dp的样子 完蛋区间dp都不知道是啥quq 于是使用了玄学的姿势A过了这道题 设dp[i][j][0]表示第i天,左边选了j个,当 ...

  3. 洛谷P5759题解

    本文摘自本人洛谷博客,原文章地址:https://www.luogu.com.cn/blog/cjtb666anran/solution-p5759 \[这道题重在理解题意 \] 选手编号依次为: \ ...

  4. 关于三目运算符与if语句的效率与洛谷P2704题解

    题目描述 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图.在每一格平原地形上最 ...

  5. c++并查集配合STL MAP的实现(洛谷P2814题解)

    不会并查集的话请将此文与我以前写的并查集一同食用. 原题来自洛谷 原题 文字稿在此: 题目背景 现代的人对于本家族血统越来越感兴趣. 题目描述 给出充足的父子关系,请你编写程序找到某个人的最早的祖先. ...

  6. 洛谷P2607题解

    想要深入学习树形DP,请点击我的博客. 本题的DP模型同 P1352 没有上司的舞会.本题的难点在于如何把基环树DP转化为普通的树上DP. 考虑断边和换根.先找到其中的一个环,在上面随意取两个点, 断 ...

  7. 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解

    P2858 [USACO06FEB]奶牛零食Treats for the Cows 题目描述 FJ has purchased N (1 <= N <= 2000) yummy treat ...

  8. 洛谷P2858奶牛零食 题解

    题目 这个题一开始能看出来是一道动态规划的题目,但是并不知道如何写状态转移方程,但是我们可以想一想这个题应该是一道区间DP,而区间DP的特点就是状态转移方程一般跟该区间的左节点和右节点或者中间断点有关 ...

  9. 洛谷P2858 奶牛零食 题解 区间DP入门题

    题目大意: 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了 \(N(1 \le N \le 2000)\) 份美味的零食来卖给奶牛们.每天约翰售出一份零 ...

随机推荐

  1. 乘风破浪,Windows11设计和开发指导,全新图标字体和云母材质

    Windows11全新的布局设计 Windows 11全新的布局设计已设计为支持现代应用体验.渐进的圆角.嵌套元素和一致的排水沟相结合,营造出柔和.平静.平易近人的效果,强调目的的统一和易用性. ht ...

  2. POJ 3304 Segments 叉积

    题意: 找出一条直线,让给出的n条线段在这条直线的投影至少有一个重合的点 转化一下,以重合的点作垂线,那么这条直线一定经过那n条线段.现在就是求找到一条直线,让这条直线经过所有线段 分析: 假设存在这 ...

  3. Postgresql常见操作命令

    安装Postgresql 请查看我的另一篇博文: 博文连接:https://www.cnblogs.com/cndevops/p/14962745.html 连接Postgresql数据库 服务端连接 ...

  4. Linux学习之路(RPM和YUM)

    rpm包的管理 介绍: 一种用于互联网下载包的打包及安装工具(类似windows中的setup).它包含在某些Linux分发版中.它生成具有RPM扩展名的文件.RPM是RedHat软件包管理工具缩写, ...

  5. bugku SKCTF管理系统

    这题hint是sql约束攻击...sql约束攻击其实我没了解过,当时就各种百度,现在总结一下 0x01: sql约束攻击:通常是sql查询语句select * from username= 'lin' ...

  6. WPF教程五:附加依赖项属性

    附加依赖项属性是一个属性本来不属于对象自己,但是某些特定场景其他的对象要使用该对象在这种场景下的值.这个值只在这个场景下使用.基于这个需求设计出来的属性.这里主要涉及到一个解耦问题.最大的优势是在特定 ...

  7. python import 导入两个模块同时有同一名称的方法如何调用 ?

    from moudule import *(这种方法不推荐) 一般不推荐使用"from 模块 import"这种语法导入指定模块内的所有成员,因为它存在潜在的风险. 比如同时导入 ...

  8. asp.net 读取 connectionStrings

    connectionStrings 在vs.net 2005 beta 2开始,如果你在web.config中使用了数据库连接字符串的配置,那么应该按如下的方法去写: <connectionSt ...

  9. web自动化之浏览器启动

    一.环境准备 1.本地引入jar 从http://selenium-release.storage.googleapis.com/index.html?path=3.9/,下载selenium-ser ...

  10. kali之Metasploit入门

    前言 不得不说Metasploit 目前是世界领先的黑客框架.它在某种程度上被几乎每个黑客/渗透者使用.因此,如果您想进入网络安全/渗透测试行业并有所成就,您就必须要需要熟悉它. Metasploit ...