\(\mathcal{Description}\)

  Link.

  给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \(v\) 的路径所必经的结点权值 \(+1\)。求最终每个结点的权值。

  \(n\le10^5\),\(m,q\le2\times10^5\)。

\(\mathcal{Solution}\)

  看到”必经之点“,应该考虑圆方树。

  对于每个点对,直接在圆方树上作差分。具体地,两个圆点的 tag++,其 LCA 和 LCA 的父亲(如果存在)的 tag--,最后一遍 DFS 求每个圆点的子树 tag 和即可。

  复杂度 \(\mathcal O(n)\)。

\(\mathcal{Code}\)

#include <cstdio>

const int MAXN = 1e5, MAXM = 2e5;
int n, m, q, snode;
int dfc, top, dfn[MAXN + 5], low[MAXN + 5], stk[MAXN + 5];
int dep[MAXN * 2 + 5], fa[MAXN * 2 + 5][20], tag[MAXN * 2 + 5], sum[MAXN * 2 + 5]; struct Graph {
int ecnt, head[MAXN * 2 + 5], to[MAXM * 2 + 5], nxt[MAXM * 2 + 5];
inline void link ( const int s, const int t ) {
to[++ ecnt] = t, nxt[ecnt] = head[s];
head[s] = ecnt;
}
inline void add ( const int u, const int v ) {
link ( u, v ), link ( v, u );
}
} src, tre; inline bool chkmin ( int& a, const int b ) { return b < a ? a = b, true : false; } inline void Tarjan ( const int u, const int f ) {
dfn[u] = low[u] = ++ dfc, stk[++ top] = u;
for ( int i = src.head[u], v; i; i = src.nxt[i] ) {
if ( ( v = src.to[i] ) == f ) continue;
if ( ! dfn[v] ) {
Tarjan ( v, u ), chkmin ( low[u], low[v] );
if ( low[v] >= dfn[u] ) {
tre.add ( u, ++ snode );
do tre.add ( snode, stk[top] ); while ( stk[top --] ^ v );
}
} else chkmin ( low[u], dfn[v] );
}
} inline void init ( const int u, const int f ) {
dep[u] = dep[fa[u][0] = f] + 1;
for ( int i = 1; i <= 17; ++ i ) fa[u][i] = fa[fa[u][i - 1]][i - 1];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
init ( v, u );
}
}
} inline int calcLCA ( int u, int v ) {
if ( dep[u] < dep[v] ) u ^= v ^= u ^= v;
for ( int i = 17; ~ i; -- i ) if ( dep[fa[u][i]] >= dep[v] ) u = fa[u][i];
if ( u == v ) return u;
for ( int i = 17; ~ i; -- i ) if ( fa[u][i] ^ fa[v][i] ) u = fa[u][i], v = fa[v][i];
return fa[u][0];
} inline void calcAns ( const int u, const int f ) {
sum[u] = tag[u];
for ( int i = tre.head[u], v; i; i = tre.nxt[i] ) {
if ( ( v = tre.to[i] ) ^ f ) {
calcAns ( v, u ), sum[u] += sum[v];
}
}
} int main () {
scanf ( "%d %d %d", &n, &m, &q ), snode = n;
for ( int i = 1, u, v; i <= m; ++ i ) {
scanf ( "%d %d", &u, &v );
src.add ( u, v );
}
Tarjan ( 1, 0 ), init ( 1, 0 );
for ( int i = 1, u, v; i <= q; ++ i ) {
scanf ( "%d %d", &u, &v );
++ tag[u], ++ tag[v];
int w = calcLCA ( u, v );
-- tag[w];
if ( fa[w] ) -- tag[fa[w][0]];
}
calcAns ( 1, 0 );
for ( int i = 1; i <= n; ++ i ) printf ( "%d\n", sum[i] );
return 0;
}

Solution -「BZOJ 3331」压力的更多相关文章

  1. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  2. Solution -「BZOJ #3786」星系探索

    \(\mathcal{Description}\)   Link.   给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...

  3. Solution -「BZOJ 4316」小C的独立集

    \(\mathcal{Description}\)   Link.   求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集.   \(n\le5\times10^4\),\(m\le6\ ...

  4. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  5. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  6. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  7. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  8. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  9. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

随机推荐

  1. Java实现单词统计

    原文链接: https://www.toutiao.com/i6764296608705151496/ 单词统计的是统计一个文件中单词出现的次数,比如下面的数据源 其中,最终出现的次数结果应该是下面的 ...

  2. 手动安装selenium包

    1.下载selenium安装包 https://pypi.org/project/selenium 2.解压selenium-3.12.0.tar.gz 3.cmd环境进入到selenium的setu ...

  3. nao机器人使用手册

    简单使用和保养 开关机和马达 开机是按一下,后来按一下相当于重启了一次程序,3是播报IP地址,5秒是关机,8秒是强制关机. 电池 3月左右不用需要取下电池.夏天5-8小时,冬天8-10小时充电.活动时 ...

  4. 使用Cesium的地下渲染技术可视化瑞士的地质资源

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Camptocamp为瑞士拓扑的孪生数字增加了地下可视化功能. ...

  5. 微信小程序-国际化(miniprogram-i18n)

    前情提要 最近维护了一个微信小程序的老项目,维护的其中一项是添加国际化.由于踩了蛮多坑,所以就有了这篇文档!!! miniprogram-i18n 对除小程序外的其他框架开发做过国际化的朋友来说i18 ...

  6. 程序员必备的编程助手!SmartCoder助你轻松集成HMS Core

    当开发者在集成HMS Core遇到一些疑问时,需要翻阅官网文档,反复查看集成说明或者API调用说明,或者研究GitHub上的开源示例代码,花费较多的时间,在IDE环境和网页浏览器之间反复切换也会耗费很 ...

  7. lvs的三种模式

    一.NAT模式(VS-NAT) 原理:就是把客户端发来的数据包的IP头的目的地址,在负载均衡器上换成其中一台RS的IP地址,并发至此RS来处理,RS处理完成后把数据交给经过负载均衡器,负载均衡器再把数 ...

  8. Redis入门及环境搭建

    一:Redis简介 Redis(Remote Dictionary Server 远程字典服务)是一个开源的(BSD许可的)内存数据结构存储,用作数据库.高速缓存和消息队列代理. Redis提供五大基 ...

  9. python 小兵(4)之文件操作 小问题

    1.光标不对就用seek 2.文件操作方面注意不要变修改变删除,会爆出文件正在运行不能操作 3.w模式下只有开始打开的时候会清空 4.文件操作的时候用as 后面的参数进行操作,不能用文件名进行操作 5 ...

  10. python小兵之时间模块

    Python  日期和时间 Python 程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能. Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间. 时间 ...