Solution -「LOCAL」ZB 平衡树
\(\mathcal{Description}\)
维护一列二元组 \((a,b)\),给定初始 \(n\) 个元素,接下来 \(m\) 次操作:
在某个位置插入一个二元组;
翻转一个区间;
区间 \(a\) 值加上一个数;
区间 \(a\) 值乘上一个数;
区间 \(a\) 值赋为一个数;
询问 \(\sum_{i=l}^r\sum_{j=i}^ra_j^3\bmod10086001\)。
特别地,若区间操作指名类型为 \(1\),则需要将输入的左端点替换为输入区间内次大二元组 \((b_i,i)\) 的 \(i\)(二元组传统偏序关系比较;保证存在)。
\(n,m\le2\times10^5\)。
\(\mathcal{Solution}\)
出题人都写不对的码农题系列。(
很明显 \(a\) 的维护和 \(b\) 的维护完全不相关,先考虑处理 \(a\) 上的操作。区间加法和一个次数不算高的幂和,提示我们暴力维护 \(0\sim3\) 次幂和来处理修改。所以维护一个阶梯幂和(值 \(\times\)下标,应对“后缀和之和”的询问),和一个普通幂和(乘若干倍后与前者相减就能做到翻转区间)。
对于 \(b\),直接维护次大值相关信息非常麻烦。可以考虑仅维护最大值,然后利用非旋 Treap 的操作处理。首先,找到区间最大值,把树裂乘最大值左侧树和最大值右侧树,分别在两棵树里找最大值,显然次大值比为其中之一。
于是 \(\mathcal O((n+m)\log(n+m))\) 就口胡完了,至于 \(8K+\) 的码量嘛……/xyx
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#include <cassert>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
inline int rint () {
int x = 0, f = 1; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 4e5, MOD = 10086001, INF = ( 1ll << 31 ) - 1;
int n, q, a[MAXN + 5];
inline void iswp ( int& a, int& b ) { a ^= b ^= a ^= b; }
inline void muleq ( int& a, const int b ) { a = 1ll * a * b % MOD; }
inline int mul ( const long long a, const int b ) { return a * b % MOD; }
inline int sub ( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add ( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq ( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD, 0 ); }
inline int imax ( const int a, const int b ) { return a < b ? b : a; }
inline int imin ( const int a, const int b ) { return a < b ? a : b; }
inline int sqr ( const int n ) { return ( n * ( n + 1ll ) >> 1 ) % MOD; }
struct Cube {
int pwr[3];
Cube (): pwr {} {}
Cube ( const int v ): pwr { v, mul ( v, v ), mul ( v, mul ( v, v ) ) } {}
Cube ( const int v1, const int v2, const int v3 ): pwr { v1, v2, v3 } {}
inline int& operator [] ( const int k ) { return pwr[k]; }
inline Cube operator + ( Cube c ) const {
return {
add ( pwr[0], c[0] ), add ( pwr[1], c[1] ), add ( pwr[2], c[2] )
};
}
inline Cube operator - ( Cube& c ) const {
return {
sub ( pwr[0], c[0] ), sub ( pwr[1], c[1] ), sub ( pwr[2], c[2] )
};
}
inline Cube operator * ( const int c ) const {
return {
mul ( pwr[0], c ), mul ( pwr[1], c ), mul ( pwr[2], c )
};
}
inline Cube operator * ( Cube c ) const {
return {
mul ( pwr[0], c[0] ), mul ( pwr[1], c[1] ), mul ( pwr[2], c[2] )
};
}
};
struct NRTreap {
int node, root, ch[MAXN + 5][2], key[MAXN + 5], siz[MAXN + 5];
int a[MAXN + 5], b[MAXN + 5], zb[MAXN + 5];
Cube sum[MAXN + 5], lad[MAXN + 5];
int asgt[MAXN + 5], mult[MAXN + 5], addt[MAXN + 5];
bool revt[MAXN + 5];
NRTreap (): zb { -INF } { srand ( 20120712 ); }
inline int crtnd ( const int va, const int vb ) {
int u = ++node;
key[u] = rand (), siz[u] = 1;
lad[u] = sum[u] = a[u] = va;
zb[u] = b[u] = vb;
asgt[u] = INF, mult[u] = 1, addt[u] = revt[u] = 0;
return u;
}
inline void pushrv ( const int x ) {
revt[x] ^= 1, ch[x][0] ^= ch[x][1] ^= ch[x][0] ^= ch[x][1];
lad[x] = sum[x] * ( siz[x] + 1 ) - lad[x];
}
inline void pushas ( const int x, const int v ) {
a[x] = asgt[x] = v, mult[x] = 1, addt[x] = 0;
sum[x] = Cube ( v ) * siz[x], lad[x] = Cube ( v ) * sqr ( siz[x] );
}
inline void pushmu ( const int x, const int v ) {
muleq ( a[x], v ), muleq ( mult[x], v ), muleq ( addt[x], v );
sum[x] = sum[x] * Cube ( v );
lad[x] = lad[x] * Cube ( v );
}
inline void pushad ( const int x, const int v1 ) {
int v2 = mul ( v1, v1 ), v3 = mul ( v2, v1 );
addeq ( a[x], v1 ), addeq ( addt[x], v1 );
addeq ( lad[x][2], mul ( sqr ( siz[x] ), v3 ) );
addeq ( lad[x][2], mul ( mul ( 3, v2 ), lad[x][0] ) );
addeq ( lad[x][2], mul ( mul ( 3, v1 ), lad[x][1] ) );
addeq ( lad[x][1], mul ( sqr ( siz[x] ), v2 ) );
addeq ( lad[x][1], mul ( mul ( 2, v1 ), lad[x][0] ) );
addeq ( lad[x][0], mul ( sqr ( siz[x] ), v1 ) );
addeq ( sum[x][2], mul ( siz[x], v3 ) );
addeq ( sum[x][2], mul ( mul ( 3, v2 ), sum[x][0] ) );
addeq ( sum[x][2], mul ( mul ( 3, v1 ), sum[x][1] ) );
addeq ( sum[x][1], mul ( siz[x], v2 ) );
addeq ( sum[x][1], mul ( mul ( 2, v1 ), sum[x][0] ) );
addeq ( sum[x][0], mul ( siz[x], v1 ) );
}
inline void pushdn ( const int x ) {
if ( revt[x] ) {
if ( ch[x][0] ) pushrv ( ch[x][0] );
if ( ch[x][1] ) pushrv ( ch[x][1] );
revt[x] = 0;
}
if ( asgt[x] != INF ) {
if ( ch[x][0] ) pushas ( ch[x][0], asgt[x] );
if ( ch[x][1] ) pushas ( ch[x][1], asgt[x] );
asgt[x] = INF;
}
if ( mult[x] != 1 ) {
if ( ch[x][0] ) pushmu ( ch[x][0], mult[x] );
if ( ch[x][1] ) pushmu ( ch[x][1], mult[x] );
mult[x] = 1;
}
if ( addt[x] ) {
if ( ch[x][0] ) pushad ( ch[x][0], addt[x] );
if ( ch[x][1] ) pushad ( ch[x][1], addt[x] );
addt[x] = 0;
}
}
inline void pushup ( const int x ) {
siz[x] = siz[ch[x][0]] + siz[ch[x][1]] + 1;
zb[x] = imax ( b[x], imax ( zb[ch[x][0]], zb[ch[x][1]] ) );
sum[x] = sum[ch[x][0]] + a[x] + sum[ch[x][1]];
lad[x] = lad[ch[x][0]] + Cube ( a[x] ) * ( siz[ch[x][0]] + 1 )
+ lad[ch[x][1]] + sum[ch[x][1]] * ( siz[ch[x][0]] + 1 );
}
inline int merge ( const int x, const int y ) {
if ( !x || !y ) return x | y;
pushdn ( x ), pushdn ( y );
if ( key[x] < key[y] ) {
ch[x][1] = merge ( ch[x][1], y ), pushup ( x );
return x;
} else {
ch[y][0] = merge ( x, ch[y][0] ), pushup ( y );
return y;
}
}
inline void rsplit ( const int r, const int k, int& x, int& y ) {
if ( !r ) return void ( x = y = 0 );
pushdn ( r );
if ( k <= siz[ch[r][0]] ) y = r, rsplit ( ch[r][0], k, x, ch[r][0] );
else x = r, rsplit ( ch[r][1], k - siz[ch[r][0]] - 1, ch[r][1], y );
pushup ( r );
}
inline void insert ( const int p, const int va, const int vb ) {
int x, y; rsplit ( root, p, x, y );
root = merge ( x, merge ( crtnd ( va, vb ), y ) );
}
#define extract() ( rsplit ( root, l - 1, x, y ), rsplit ( y, r - l + 1, y, z ) )
inline void reverse ( const int l, const int r ) {
int x, y, z; extract ();
if ( y ) pushdn ( y ), pushrv ( y );
root = merge ( x, merge ( y, z ) );
}
inline void addsec ( const int l, const int r, const int v ) {
int x, y, z; extract ();
if ( y ) pushdn ( y ), pushad ( y, v );
root = merge ( x, merge ( y, z ) );
}
inline void mulsec ( const int l, const int r, const int v ) {
int x, y, z; extract ();
if ( y ) pushdn ( y ), pushmu ( y, v );
root = merge ( x, merge ( y, z ) );
}
inline void asgsec ( const int l, const int r, const int v ) {
int x, y, z; extract ();
if ( y ) pushdn ( y ), pushas ( y, v );
root = merge ( x, merge ( y, z ) );
}
inline int query ( const int l, const int r ) {
int x, y, z, ret; extract ();
ret = lad[y][2], root = merge ( x, merge ( y, z ) );
return ret;
}
#undef extract
inline int maxrk ( const int r ) {
int u = r, mx = zb[r], ret = 0;
while ( u ) {
pushdn ( u );
if ( zb[ch[u][0]] == mx ) u = ch[u][0];
else {
ret += siz[ch[u][0]] + 1;
if ( b[u] == mx ) return ret;
else u = ch[u][1];
}
}
return assert ( false ), -1;
}
inline int smaxrk ( const int l, const int r ) {
int p, x, y, z, q, ret;
rsplit ( root, l - 1, p, x );
rsplit ( x, r - l + 1, x, q );
rsplit ( x, maxrk ( x ) - 1, x, y );
rsplit ( y, 1, y, z );
assert ( siz[y] == 1 && ( zb[x] > -INF || zb[z] > -INF ) );
if ( zb[x] >= zb[z] ) ret = l - 1 + maxrk ( x );
else ret = l - 1 + siz[x] + 1 + maxrk ( z );
root = merge ( p, merge ( x, merge ( y, merge ( z, q ) ) ) );
#ifdef RYBY
printf ( "s(%d,%d)=%d\n", l, r, ret );
#endif
return ret;
}
} trp;
int main () {
n = rint (), q = rint ();
rep ( i, 1, n ) a[i] = rint () % MOD;
rep ( i, 1, n ) {
trp.root = trp.merge ( trp.root, trp.crtnd ( a[i], rint () ) );
}
for ( int tp, op, l, r; q--; ) {
tp = rint (), op = rint (), l = rint (), r = rint ();
if ( op == 1 ) { trp.insert ( l, ( r + MOD ) % MOD, rint () ); continue; }
if ( tp ) l = trp.smaxrk ( l, r );
if ( op == 2 ) { trp.reverse ( l, r ); continue; }
if ( op == 3 ) { trp.addsec ( l, r, ( rint () + MOD ) % MOD ); continue; }
if ( op == 4 ) { trp.mulsec ( l, r, ( rint () + MOD ) % MOD ); continue; }
if ( op == 5 ) { trp.asgsec ( l, r, ( rint () + MOD ) % MOD ); continue; }
wint ( trp.query ( l, r ) ), putchar ( '\n' );
}
return 0;
}
/*
1 2 3 14 15 16 7 8 9 10 ||| 3 2 5 7 9 1 4 2 7 10
*/
Solution -「LOCAL」ZB 平衡树的更多相关文章
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「LOCAL」大括号树
\(\mathcal{Description}\) OurTeam & OurOJ. 给定一棵 \(n\) 个顶点的树,每个顶点标有字符 ( 或 ).将从 \(u\) 到 \(v\) ...
- Solution -「LOCAL」过河
\(\mathcal{Description}\) 一段坐标轴 \([0,L]\),从 \(0\) 出发,每次可以 \(+a\) 或 \(-b\),但不能越出 \([0,L]\).求可达的整点数. ...
- Solution -「LOCAL」Drainage System
\(\mathcal{Description}\) 合并果子,初始果子的权值在 \(1\sim n\) 之间,权值为 \(i\) 的有 \(a_i\) 个.每次可以挑 \(x\in[L,R]\) ...
- Solution -「LOCAL」Burning Flowers
灼之花好评,条条生日快乐(假装现在 8.15)! \(\mathcal{Description}\) 给定一棵以 \(1\) 为根的树,第 \(i\) 个结点有颜色 \(c_i\) 和光亮值 ...
- Solution -「LOCAL」画画图
\(\mathcal{Description}\) OurTeam. 给定一棵 \(n\) 个点的树形随机的带边权树,求所有含奇数条边的路径中位数之和.树形生成方式为随机取不连通两点连边直到全 ...
- Solution -「LOCAL」舟游
\(\mathcal{Description}\) \(n\) 中卡牌,每种三张.对于一次 \(m\) 连抽,前 \(m-1\) 次抽到第 \(i\) 种的概率是 \(p_i\),第 \(m\) ...
- Solution -「LOCAL」充电
\(\mathcal{Description}\) 给定 \(n,m,p\),求序列 \(\{a_n\}\) 的数量,满足 \((\forall i\in[1,n])(a_i\in[1,m])\l ...
- Solution -「LOCAL」「cov. 牛客多校 2020 第五场 C」Easy
\(\mathcal{Description}\) Link.(完全一致) 给定 \(n,m,k\),对于两个长度为 \(k\) 的满足 \(\left(\sum_{i=0}^ka_i=n\r ...
随机推荐
- react中使用antd按需加载(第一部)
什么是react按需加载?简单来说就是当我们引用antd的时候需要引入全局css样式,这会对性能造成一定的影响,那么使用按需加载以后就不需要引入css全局样式了,直接引入功能模块即可,既然需要设置按需 ...
- VM搭建Hadoop环境遇到的问题
原文链接:https://www.toutiao.com/i6482644128860471822/ 一.Slave2中sshd服务一直处于启动失败状态 查看配置文件 c 发现配置文件末尾slave2 ...
- 随机数Random 和枚举enum
(一):生成随机数 要指定的话 需要在方法中指定最大的值 nextint(10)意思是 下一个的数是10需要导包:import java.util.Random; (二)枚举 enum 的语法和 ...
- T-SQL创建数据库常用方法2020年10月29日20:12:04网课笔记
2.接口的作用 第一.方便框架的设计.利于团队的开发. 第二.方便项目拓展.高内聚.低耦合. 3.反射 [1]反射的理解:通过读取程序集的信息,找到相关的类型和类型的成员,也可以得到相关的对象.而这种 ...
- Centos下安装Maven私服Nexus
dockers安装Nexus,指定访问路径(默认为/:在使用Nginx做反向代理时,最好指定访问路径),并在容器外持久化数据,避免Nexus容器升级后数据丢失. 安装并启动 docker run -d ...
- Bootstrap实战 - 注册和登录
一.介绍 注册和登录在社交和商业网站中是必不可少的一个部分. 二.知识点 2.1 标签页 2.1.1 基础标签页 标签页的使用与导航栏类似,同时都依赖于基础样式 nav,不同的是附加样式变成了 nav ...
- css3中transition属性详解
css3中通过transition属性可以实现一些简单的动画过渡效果~ 1.语法 transition: property duration timing-function delay; transi ...
- Express框架的简单使用
Express框架的简单使用 这个框架是基于Node.js的框架平台 需要先安装node.js 安装完node.js后使用指令操作 npm init --yes 初始化 npm i express 安 ...
- Node内部架构图
1.Node内部架构图 先来看一下Node节点的内部实现架构图. 首先最上层入口是Restful风格和javaTcp风格的API入口,RestFul请求映射到处理器RestControl.JavaAp ...
- php中关于数据库的操作
php中对数据库的操作,举例如下: //连接到本地mysql数据库 $myconn=mysql_connect("localhost","root"," ...