Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\)
Link.
给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\) 的数量,使得 \(H\) 是强连通图。答案模 \((10^9+7)\)。
\(n\le15\)。
\(\mathcal{Solution}\)
仙气十足的状压容斥。
令 \(f(S)\) 表示仅考虑点集 \(S\) 的导出子图时,使得 \(S\) 强连通的选边方案数,那么 \(f(V)\) 就是答案。如何划分出这个状态的阶段性?尝试容斥,设 \(\operatorname{inc}(S)\) 表示 \(S\) 导出子图的边数,首先把 \(f(S)\) 转化成「任意选边方案数 \(2^{\operatorname{inc}(S)}\)」减去「至少有两个极大强连通分量的方案数」。
此时,后者具有阶段性:如果把极大强连通分量缩点,那么后者就是在对点数大于 \(1\) 的 DAG 计数。由 DAG 本身入手,自然想到每次考虑 DAG 上出度为 \(0\) 的点集。还是容斥计数,令 \(g(S)\) 表示在 \(S\) 的导出子图中,将 \(S\) 分为若干个互不邻接的强连通分量的带容斥系数的选边方案数。其中含奇数个强连通分量的方案容斥系数为 \(-1\),否则为 \(+1\)。对于 \(g(S)\) 本身,钦定特殊点 \(x\in S\),可以得到转移
\]
而对于 \(f(S)\),枚举「DAG 上至少有 \(k\) 个出度为 \(0\) 的点」以求出「至少有两个极大强连通分量的方案数」,最终得到转移
\]
其中 \(\operatorname{out}(S,T)\) 表示满足 \(u\in S,v\in T\) 的有向边 \(\lang u,v\rang\) 的数量。但是特别注意,\(f(S)\) 和 \(g(S)\) 看似存在互相转移,实际上 \(f(S)\) 中的和式本身是求非法方案,所以当其中 \(T=S\) 时,应令此时 \(g(T)\) 的值为 \([g(S)+f(S)]\)(带容斥系数,本身是减,用加抵消),这样满足实际意义,且不存在互相转移了。
最终复杂度为 \(\mathcal O(3^n+m2^n)\),注意求 \(\operatorname{out}\) 的时空效率。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <cstdio>
#include <unordered_map>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
const int MAXN = 15, MAXM = MAXN * ( MAXN - 1 ), MOD = 1e9 + 7;
int n, m, pwr[MAXM + 5];
int inc[1 << MAXN], f[1 << MAXN], g[1 << MAXN];
int in[MAXN + 5][1 << MAXN], out[MAXN + 5][1 << MAXN];
int sout[1 << MAXN], bitw[1 << MAXN];
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
int main() {
scanf( "%d %d", &n, &m ), pwr[0] = 1;
rep ( i, 1, m ) {
pwr[i] = add( pwr[i - 1], pwr[i - 1] );
int s, t; scanf( "%d %d", &s, &t ), --s, --t;
rep ( S, 0, ( 1 << n ) - 1 ) {
inc[S] += S >> s & 1 && S >> t & 1;
out[s][S] += S >> t & 1, in[t][S] += S >> s & 1;
}
}
rep ( S, 1, ( 1 << n ) - 1 ) {
if ( S > 1 ) bitw[S] = bitw[S >> 1] + 1;
for ( int T = S & ( S - 1 ); T; T = ( T - 1 ) & S ) {
int v = ( S ^ T ) & -( S ^ T );
sout[T] = sout[T | v] - out[bitw[v]][S ^ T] + in[bitw[v]][T];
}
int &curf = f[S] = pwr[inc[S]], &curg = g[S];
for ( int T = S & ( S - 1 ); T; T = ( T - 1 ) & S ) if ( T & S & -S ) {
subeq( curg, mul( f[T], g[S ^ T] ) );
}
for ( int T = S; T; T = ( T - 1 ) & S ) {
addeq( curf, mul( pwr[inc[S ^ T] + sout[S ^ T]], g[T] ) );
}
subeq( curg, curf );
}
printf( "%d\n", f[( 1 << n ) - 1] );
return 0;
}
Solution -「BZOJ 3812」主旋律的更多相关文章
- Solution -「BZOJ #3786」星系探索
\(\mathcal{Description}\) Link. 给定一棵含 \(n\) 个点的有根树,点有点权,支持 \(q\) 次操作: 询问 \(u\) 到根的点权和: 修改 \(u\) ...
- Solution -「BZOJ 4316」小C的独立集
\(\mathcal{Description}\) Link. 求包含 \(n\) 个结点 \(m\) 条边的仙人掌的最大独立集. \(n\le5\times10^4\),\(m\le6\ ...
- Solution -「BZOJ 3331」压力
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图,并给出 \(q\) 个点对 \((u,v)\),令 \(u\) 到 \ ...
- 「BZOJ 4228」Tibbar的后花园
「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...
- 「BZOJ 3645」小朋友与二叉树
「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...
- 「BZOJ 4502」串
「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...
- 「BZOJ 4289」 PA2012 Tax
「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...
- 「BZOJ 2534」 L - gap字符串
「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...
- 「BZOJ 2956」模积和
「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...
随机推荐
- Java语言学习案例雷霆战机
1.Java雷霆战机学习笔记(一)-资源加载 https://www.toutiao.com/i6631331313259381255/ 2.Java雷霆战机学习笔记(二)-音乐播放 https:// ...
- 曾经大量使用的Model1开发模式,虽不常用,但可以帮我们理解JSP
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513394762370777604/ 1.<JSP页面实际上就是Servlet> 2.<JSP页 ...
- 战争游戏(War Games 1983)剧情
战争游戏 War Games(1983) 人工控制导弹发射 傍晚大雾,两值工作人员自驾一辆轿车到达监控俄罗斯核战争的防空基地,在门口出示工作证后进入基地,两工作人员和同事换班后,进入防空系统控制室开始 ...
- 基于Dapper的分布式链路追踪入门——Opencensus+Zipkin+Jaeger
微信搜索公众号 「程序员白泽」,进入白泽的编程知识分享星球 最近做了一些分布式链路追踪有关的东西,写篇文章来梳理一下思路,或许可以帮到想入门的同学.下面我将从原理到demo为大家一一进行讲解,欢迎评论 ...
- RocketMQ 原理:消息存储、高可用、消息重试、消息幂等性
目录 消息存储 消息存储方式 非持久化 持久化 消息存储介质 消息存储与读写方式 消息存储结构 刷盘机制 同步刷盘 异步刷盘 小结 高可用 高可用实现 主从复制 负载均衡 消息重试 顺序消息重试 无序 ...
- Vulnhub - THE PLANETS: EARTH
环境配置 从www.vulnhub.com下载靶机,在VMware中导入,自动分配IP 主机发现 通过对内网主机的扫描,VMware为目标主机 端口扫描 使用nmap对主机进行扫描 发现443端口信息 ...
- Cesium官方英文论坛
Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Cesium官方刚刚完成了将Google Groups论坛转移到 ...
- JVM之Java内存区域
JVM之Java内存区域 世界上并没有完美的程序,但我们并不因此而沮丧,因为写程序本来就是一个不断追求完美的过程. 一.JAVA内存区域 谈及JAVA虚拟机运行时数据区域就不得不祭出这张经典的图了: ...
- dubbo-gateway 高性能dubbo网关
dubbo-gateway dubbo-gateway 提供了http协议到dubbo协议的转换,但[并非]使用dubbo的[泛化]调用(泛化调用性能比普通调用有10-20%的损耗,通过普通异步的调用 ...
- vivo数据库与存储平台的建设和探索
本文根据Xiao Bo老师在"2021 vivo开发者大会"现场演讲内容整理而成.公众号回复[2021VDC]获取互联网技术分会场议题相关资料. 一.数据库与存储平台建设背景 以史 ...