Solution -「ARC 104D」Multiset Mean
\(\mathcal{Description}\)
Link.
读题时间≈想题时间,草。(
给定 \(N,K,M\),对于每个 \(x\in[1,N]\) 的整数 \(x\),统计多重集 \(\{s\}\) 的个数,使得集合元素的平均数为 \(x\),且满足对于任意 \(i\), \(s_i\in[1,N]\) 且 \(\sum_j[s_i=s_j]\le K\),即相同元素至多出现 \(K\) 次。答案对 \(M\) 取模。
\(N,K\le100\)。
\(\mathcal{Solution}\)
首先,看到“平均数”“中位数”之类的 AtCoder 比较喜欢的东西,肯定要进行转化。这里可以转化为“偏移量”:假设已钦定平均数 \(x\),那么一个元素 \(v\) 的贡献就是 \(v-x\),最终满足贡献和为 \(0\) 即可。对于任意多重集 \(\{s\}\),记 \(i\) 在其中出现的次数为 \(k_i~(i\in[1,N])\),那么:
&\sum_{i=1}^nik_i=x|\{s\}|\\
\Leftrightarrow &\sum_{i=1}^n(i-x)k_i=0\\
\Leftrightarrow &\sum_{i=1}^{x-1}(x-i)k_i=\sum_{i=x+1}^n(i-x)k_i
\end{aligned}
\]
写着形象点就是满足:
\]
然后非常 amazing 地发现等号左右描述的是同一形式的问题:求 \(\{k_n\}\) 的个数,使得 \(\sum_{i=1}^nik_i=s\),且满足 \(k_i\in[0,K]\),其中 \(n,s\) 是形式参数。这个问题显然可以 DP:令 \(f(i,j)\) 表示 \(\sum_{t=1}^itk_t=j\) 的方案数,枚举新加入的 \(k_{i+1}\) 的值即可转移。
第一维大小显然为 \(n\),考虑第二维的大小,我们只需要求出能使等式左右两边同时取到的 \(j\) 值。所以 \(j\le K(1+2+\cdots+\lfloor\frac{n}2\rfloor)\)。
最后,求答案时,枚举等式左右同时取到的值,乘法原理乘起来,别忘了乘上 \(k_x\) 的 \(K+1\) 种取值,在减去空集的 \(1\)。(真啰嗦 owo。
总复杂度 \(\mathcal O(N^3K)\) 带小于 \(\frac{1}8\) 的巨小常数(有问题欢迎指出 w),DP 建议刷表,考虑到无用状态数较多,跑得可快啦!
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
inline void wint ( int x ) {
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
}
const int MAXN = 100;
int N, K, M, f[MAXN + 1][MAXN * ( MAXN / 2 + 1 ) * ( MAXN >> 1 ) / 2 + 5];
inline void addeq ( int& a, const int b ) { ( a += b ) < M ? 0 : a -= M; }
inline void initDP () {
f[0][0] = 1;
int sbound = K * ( N / 2 + 1 ) * ( N >> 1 ) >> 1;
for ( int i = 0; i < N; ++ i ) {
for ( int j = 0, cur; j <= sbound; ++ j ) {
if ( !( cur = f[i][j] ) ) continue;
for ( int k = 0, s = j; k <= K && s <= sbound; ++ k, s += i + 1 ) {
addeq ( f[i + 1][s], cur );
}
}
}
}
inline int solve ( const int x ) {
// k[x-1]+2k[x-2]+...+(x-1)k[1] = k[x+1]+2k[x+2]+...+(n-x)k[n].
int sbound = x - 1 < N - x ? x - 1 : N - x, ret = 0;
sbound = K * sbound * ( sbound + 1 ) >> 1;
for ( int s = 0; s <= sbound; ++ s ) {
addeq ( ret, 1ll * f[x - 1][s] * f[N - x][s] % M );
}
return ( ret * ( K + 1ll ) % M + M - 1 ) % M;
}
int main () {
scanf ( "%d %d %d", &N, &K, &M );
initDP ();
for ( int i = 1; i <= N; ++ i ) {
wint ( solve ( i ) );
putchar ( '\n' );
}
return 0;
}
Solution -「ARC 104D」Multiset Mean的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「ARC 125E」Snack
\(\mathcal{Description}\) Link. 把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个:第 \(i\) 个人得到同种零食数量 ...
- Solution -「ARC 058C」「AT 1975」Iroha and Haiku
\(\mathcal{Description}\) Link. 称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...
随机推荐
- spring cloud Zuul 多层拦截 --- 心得
1.前言 根据教材.博客文章的实例实操,基本都是单层拦截,没有找到多层拦截的具体写法 ,让我走了很多弯路,我将其写在这里,以待以后参考. 2.环境 spring boot : 2.1.6.RELEAS ...
- JDBC简单查询数据库
注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6543890367761089031/ 1.我们先新建一个数据库作为测试库 数据库名称为test.测试表为perso ...
- LINUX学习-Nginx服务器的反向代理和负载均衡
一.准备环境 1.准备3台服务器: 1)192.168.88.10 --Nginx服务器 2)192.168.88.20 --apache服务器 3)192.168.88.30 --apache服务器 ...
- SYCOJ304末尾0的个数
https://oj.shiyancang.cn/Problem/304.html 首先数据范围不可能算出来的,那么就要看数的性质. 0是怎么来的首先我们知道,有一个0,就必然会有一个5和2. n!在 ...
- Flowable实战(二)集成Springboot
1.创建Springboot项目 打开IDEA,通过File -> New -> Project- -> Spring Initializr 创建一个新的Springboot项目 ...
- nginx代理图片上传以及访问 nginx 图片上传完整版
nginx代理图片上传 首先需要利用nginx代理图片访问参考 https://www.cnblogs.com/TJ21/p/12609017.html 编写接受文件的controller 1 @Po ...
- JVM调优2-远程监控
监控远程JVM VisualJVM不仅是可以监控本地jvm进程,还可以监控远程的jvm进程,需要借助于JMX技术实现. 什么是JMX JMX(Java Management Extensions,即J ...
- JUC并发编程与高性能内存队列disruptor实战-上
JUC并发实战 Synchonized与Lock 区别 Synchronized是Java的关键字,由JVM层面实现的,Lock是一个接口,有实现类,由JDK实现. Synchronized无法获取锁 ...
- Maven 框架结构知识总结
1.maven目录结构 目录 内容 ${basedir} 存放pom.xml和所有子目录 ${basedir}/src/main/java 项目Java代码 ${basedir}/src/main/r ...
- 【刷题-LeetCode】198 House Robber
House Robber You are a professional robber planning to rob houses along a street. Each house has a c ...