写在前面

之前部署web网站的时候,架构图中有一环节是监控部分,并且搭建一套有效的监控平台对于运维来说非常之重要,只有这样才能更有效率的保证我们的服务器和服务的稳定运行,常见的开源监控软件有好几种,如zabbix、Nagios、open-flcon还有prometheus,每一种有着各自的优劣势,感谢的童鞋可以自行百度,但是与k8s集群监控,相对于而已更加友好的是Prometheus,今天我们就看看如何部署一套Prometheus全方位监控K8S

主要内容

  • 1.Prometheus架构

  • 2.K8S监控指标及实现思路

  • 3.在K8S平台部署Prometheus

  • 4.基于K8S服务发现的配置解析

  • 5.在K8S平台部署Grafana

  • 6.监控K8S集群中Pod、Node、资源对象

  • 7.使用Grafana可视化展示Prometheus监控数据

  • 8.告警规则与告警通知

1 Prometheus架构

Prometheus 是什么

Prometheus(普罗米修斯)是一个最初在SoundCloud上构建的监控系统。自2012年成为社区开源项目,拥有非常活跃的开发人员和用户社区。为强调开源及独立维护,Prometheus于2016年加入云原生云计算基金会(CNCF),成为继Kubernetes之后的第二个托管项目。

官网地址:

https://prometheus.io

https://github.com/prometheus

Prometheus 组成及架构

  • Prometheus Server:收集指标和存储时间序列数据,并提供查询接口
  • ClientLibrary: 客户端库
  • Push Gateway:短期存储指标数据。主要用于临时性的任务
  • Exporters:采集已有的第三方服务监控指标并暴露metrics
  • Alertmanager:告警
  • Web UI:简单的Web控制台

数据模型

Prometheus将所有数据存储为时间序列;具有相同度量名称以及标签属于同一个指标。

每个时间序列都由度量标准名称和一组键值对(也成为标签)唯一标识。

时间序列格式:

{=, ...}

示例:api_http_requests_total{method="POST", handler="/messages"}

作业和实例

实例:可以抓取的目标称为实例(Instances)

作业:具有相同目标的实例集合称为作业(Job)

scrape_configs:

-job_name: 'prometheus'

static_configs:

-targets: ['localhost:9090']

-job_name: 'node'

static_configs:

-targets: ['192.168.1.10:9090']

2 K8S监控指标及实现思路

k8S监控指标

Kubernetes本身监控

  • Node资源利用率
  • Node数量
  • Pods数量(Node)
  • 资源对象状态

Pod监控

  • Pod数量(项目)
  • 容器资源利用率
  • 应用程序

Prometheus监控K8S架构

监控指标 具体实现 举例
Pod性能 cAdvisor 容器CPU
Node性能 node-exporter 节点CPU 内存利用率
K8S资源对象 kube-state-metrics Pod/Deployment/Service
服务发现:
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#kubernetes_sd_config

3 在K8S平台部署Prometheus

3.1集群环境

ip地址 角色 备注
192.168.73.136 nfs
192.168.73.138 k8s-master
192.168.73.139 k8s-node01
192.168.73.140 k8s-node02
192.168.73.135 k8s-node03

3.2 项目地址:

[root@k8s-master src]# git clone https://github.com/zhangdongdong7/k8s-prometheus.git
Cloning into 'k8s-prometheus'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (3/3), done.
[root@k8s-master src]# cd k8s-prometheus/
[root@k8s-master k8s-prometheus]# ls
alertmanager-configmap.yaml kube-state-metrics-rbac.yaml prometheus-rbac.yaml
alertmanager-deployment.yaml kube-state-metrics-service.yaml prometheus-rules.yaml
alertmanager-pvc.yaml node_exporter-0.17.0.linux-amd64.tar.gz prometheus-service.yaml
alertmanager-service.yaml node_exporter.sh prometheus-statefulset-static-pv.yaml
grafana.yaml OWNERS prometheus-statefulset.yaml
kube-state-metrics-deployment.yaml prometheus-configmap.yaml README.md

3.3 授权

RBAC(Role-Based Access Control,基于角色的访问控制):负责完成授权(Authorization)工作。

编写授权yaml

[root@k8s-master prometheus-k8s]# vim prometheus-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- nodes
- nodes/metrics
- services
- endpoints
- pods
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
verbs:
- get
- nonResourceURLs:
- "/metrics"
verbs:
- get
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
"prometheus-rbac.yaml" 55L, 1080C 1,1 Top
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
1,1 Top
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- nodes
- nodes/metrics
- services
- endpoints
- pods
verbs:
- get
- list
- watch
- apiGroups:
- ""
resources:
- configmaps
verbs:
- get
- nonResourceURLs:
- "/metrics"
verbs:
- get
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: kube-system

创建

[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-rbac.yaml

3.4 配置管理

使用Configmap保存不需要加密配置信息

其中需要把nodes中ip地址根据自己的地址进行修改

[root@k8s-master prometheus-k8s]# vim prometheus-configmap.yaml
# Prometheus configuration format https://prometheus.io/docs/prometheus/latest/configuration/configuration/
apiVersion: v1
kind: ConfigMap #
metadata:
name: prometheus-config
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: EnsureExists
data:
prometheus.yml: |
rule_files:
- /etc/config/rules/*.rules scrape_configs:
- job_name: prometheus
static_configs:
- targets:
- localhost:9090 - job_name: kubernetes-nodes
scrape_interval: 30s
static_configs:
- targets:
- 192.168.73.135:9100
- 192.168.73.138:9100
- 192.168.73.139:9100
- 192.168.73.140:9100 - job_name: kubernetes-apiservers
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- action: keep
regex: default;kubernetes;https
source_labels:
- __meta_kubernetes_namespace
- __meta_kubernetes_service_name
- __meta_kubernetes_endpoint_port_name
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
insecure_skip_verify: true
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token - job_name: kubernetes-nodes-kubelet
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
insecure_skip_verify: true
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token - job_name: kubernetes-nodes-cadvisor
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __metrics_path__
replacement: /metrics/cadvisor
scheme: https
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
insecure_skip_verify: true
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token - job_name: kubernetes-service-endpoints
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_service_annotation_prometheus_io_scrape
- action: replace
regex: (https?)
source_labels:
- __meta_kubernetes_service_annotation_prometheus_io_scheme
target_label: __scheme__
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_service_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_service_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_service_name
target_label: kubernetes_name - job_name: kubernetes-services
kubernetes_sd_configs:
- role: service
metrics_path: /probe
params:
module:
- http_2xx
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_service_annotation_prometheus_io_probe
- source_labels:
- __address__
target_label: __param_target
- replacement: blackbox
target_label: __address__
- source_labels:
- __param_target
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- source_labels:
- __meta_kubernetes_service_name
target_label: kubernetes_name - job_name: kubernetes-pods
kubernetes_sd_configs:
- role: pod
relabel_configs:
- action: keep
regex: true
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_scrape
- action: replace
regex: (.+)
source_labels:
- __meta_kubernetes_pod_annotation_prometheus_io_path
target_label: __metrics_path__
- action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
source_labels:
- __address__
- __meta_kubernetes_pod_annotation_prometheus_io_port
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- action: replace
source_labels:
- __meta_kubernetes_namespace
target_label: kubernetes_namespace
- action: replace
source_labels:
- __meta_kubernetes_pod_name
target_label: kubernetes_pod_name
alerting:
alertmanagers:
- static_configs:
- targets: ["alertmanager:80"]

创建

[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-configmap.yaml

3.5 有状态部署prometheus

这里使用storageclass进行动态供给,给prometheus的数据进行持久化,具体实现办法,可以查看之前的文章《k8s中的NFS动态存储供给》,除此之外可以使用静态供给的prometheus-statefulset-static-pv.yaml进行持久化

[root@k8s-master prometheus-k8s]# vim prometheus-statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: prometheus
namespace: kube-system
labels:
k8s-app: prometheus
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
version: v2.2.1
spec:
serviceName: "prometheus"
replicas: 1
podManagementPolicy: "Parallel"
updateStrategy:
type: "RollingUpdate"
selector:
matchLabels:
k8s-app: prometheus
template:
metadata:
labels:
k8s-app: prometheus
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
priorityClassName: system-cluster-critical
serviceAccountName: prometheus
initContainers:
- name: "init-chown-data"
image: "busybox:latest"
imagePullPolicy: "IfNotPresent"
command: ["chown", "-R", "65534:65534", "/data"]
volumeMounts:
- name: prometheus-data
mountPath: /data
subPath: ""
containers:
- name: prometheus-server-configmap-reload
image: "jimmidyson/configmap-reload:v0.1"
imagePullPolicy: "IfNotPresent"
args:
- --volume-dir=/etc/config
- --webhook-url=http://localhost:9090/-/reload
volumeMounts:
- name: config-volume
mountPath: /etc/config
readOnly: true
resources:
limits:
cpu: 10m
memory: 10Mi
requests:
cpu: 10m
memory: 10Mi - name: prometheus-server
image: "prom/prometheus:v2.2.1"
imagePullPolicy: "IfNotPresent"
args:
- --config.file=/etc/config/prometheus.yml
- --storage.tsdb.path=/data
- --web.console.libraries=/etc/prometheus/console_libraries
- --web.console.templates=/etc/prometheus/consoles
- --web.enable-lifecycle
ports:
- containerPort: 9090
readinessProbe:
httpGet:
path: /-/ready
port: 9090
initialDelaySeconds: 30
timeoutSeconds: 30
livenessProbe:
httpGet:
path: /-/healthy
port: 9090
initialDelaySeconds: 30
timeoutSeconds: 30
# based on 10 running nodes with 30 pods each
resources:
limits:
cpu: 200m
memory: 1000Mi
requests:
cpu: 200m
memory: 1000Mi volumeMounts:
- name: config-volume
mountPath: /etc/config
- name: prometheus-data
mountPath: /data
subPath: ""
- name: prometheus-rules
mountPath: /etc/config/rules terminationGracePeriodSeconds: 300
volumes:
- name: config-volume
configMap:
name: prometheus-config
- name: prometheus-rules
configMap:
name: prometheus-rules volumeClaimTemplates:
- metadata:
name: prometheus-data
spec:
storageClassName: managed-nfs-storage
accessModes:
- ReadWriteOnce
resources:
requests:
storage: "16Gi"

创建

[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-statefulset.yaml

检查状态

[root@k8s-master prometheus-k8s]# kubectl get pod -n kube-system
NAME READY STATUS RESTARTS AGE
alertmanager-5d75d5688f-fmlq6 2/2 Running 0 8d
coredns-5bd5f9dbd9-wv45t 1/1 Running 1 8d
grafana-0 1/1 Running 2 14d
kube-state-metrics-7c76bdbf68-kqqgd 2/2 Running 6 13d
kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 14d
prometheus-0 2/2 Running 6 14d

可以看到一个prometheus-0的pod,这就刚才使用statefulset控制器进行的有状态部署,状态为Runing则是正常,如果不为Runing可以使用kubectl describe pod prometheus-0 -n kube-system查看报错详情

3.6 创建service暴露访问端口

此处使用nodePort固定一个访问端口,便于记忆

[root@k8s-master prometheus-k8s]# vim prometheus-service.yaml
kind: Service
apiVersion: v1
metadata:
name: prometheus
namespace: kube-system
labels:
kubernetes.io/name: "Prometheus"
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
spec:
type: NodePort
ports:
- name: http
port: 9090
protocol: TCP
targetPort: 9090
nodePort: 30090
selector:
k8s-app: prometheus

创建

[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-service.yaml

检查

[root@k8s-master prometheus-k8s]# kubectl get pod,svc -n kube-system
NAME READY STATUS RESTARTS AGE
pod/coredns-5bd5f9dbd9-wv45t 1/1 Running 1 8d
pod/kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 14d
pod/prometheus-0 2/2 Running 6 14d NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/kube-dns ClusterIP 10.0.0.2 <none> 53/UDP,53/TCP 13d
service/kubernetes-dashboard NodePort 10.0.0.127 <none> 443:30001/TCP 16d
service/prometheus NodePort 10.0.0.33 <none> 9090:30090/TCP 13d

3.7 web访问

使用任意一个NodeIP加端口进行访问,访问地址:http://NodeIP:Port ,此例就是:http://192.168.73.139:30090

访问成功的界面如图所示:

4 在K8S平台部署Grafana

通过上面的web访问,可以看出prometheus自带的UI界面是没有多少功能的,可视化展示的功能不完善,不能满足日常的监控所需,因此常常我们需要再结合Prometheus+Grafana的方式来进行可视化的数据展示

官网地址:

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus

https://grafana.com/grafana/download

刚才下载的项目中已经写好了Grafana的yaml,根据自己的环境进行修改

4.1 使用StatefulSet部署grafana

[root@k8s-master prometheus-k8s]# vim grafana.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: grafana
namespace: kube-system
spec:
serviceName: "grafana"
replicas: 1
selector:
matchLabels:
app: grafana
template:
metadata:
labels:
app: grafana
spec:
containers:
- name: grafana
image: grafana/grafana
ports:
- containerPort: 3000
protocol: TCP
resources:
limits:
cpu: 100m
memory: 256Mi
requests:
cpu: 100m
memory: 256Mi
volumeMounts:
- name: grafana-data
mountPath: /var/lib/grafana
subPath: grafana
securityContext:
fsGroup: 472
runAsUser: 472
volumeClaimTemplates:
- metadata:
name: grafana-data
spec:
storageClassName: managed-nfs-storage
accessModes:
- ReadWriteOnce
resources:
requests:
storage: "1Gi" --- apiVersion: v1
kind: Service
metadata:
name: grafana
namespace: kube-system
spec:
type: NodePort
ports:
- port : 80
targetPort: 3000
nodePort: 30091
selector:
app: grafana

4.2 Grafana的web访问

使用任意一个NodeIP加端口进行访问,访问地址:http://NodeIP:Port ,此例就是:http://192.168.73.139:30091

成功访问界面如下,会需要进行账号密码登陆,默认账号密码都为admin,登陆之后会让修改密码

登陆之后的界面如下

第一步需要进行数据源添加,点击create your first data source数据库图标,根据下图所示进行添加即可

第二步,添加完了之后点击底部的绿色的Save&Test,会成功提示Data sourse is working,则表示数据源添加成功

4.3 监控K8S集群中Pod、Node、资源对象

Pod

kubelet的节点使用cAdvisor提供的metrics接口获取该节点所有Pod和容器相关的性能指标数据。

暴露接口地址:

https://NodeIP:10255/metrics/cadvisor

https://NodeIP:10250/metrics/cadvisor

Node

使用node_exporter收集器采集节点资源利用率。

https://github.com/prometheus/node_exporter

使用文档:https://prometheus.io/docs/guides/node-exporter/

使用node_exporter.sh脚本分别在三台服务器上部署node_exporter收集器,不需要修改可直接运行脚本

[root@k8s-master prometheus-k8s]# cat node_exporter.sh
#!/bin/bash wget https://github.com/prometheus/node_exporter/releases/download/v0.17.0/node_exporter-0.17.0.linux-amd64.tar.gz tar zxf node_exporter-0.17.0.linux-amd64.tar.gz
mv node_exporter-0.17.0.linux-amd64 /usr/local/node_exporter cat <<EOF >/usr/lib/systemd/system/node_exporter.service
[Unit]
Description=https://prometheus.io [Service]
Restart=on-failure
ExecStart=/usr/local/node_exporter/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|kubelet|kube-proxy|flanneld).service [Install]
WantedBy=multi-user.target
EOF systemctl daemon-reload
systemctl enable node_exporter
systemctl restart node_exporter
[root@k8s-master prometheus-k8s]# ./node_exporter.sh
  • 检测node_exporter的进程,是否生效
[root@k8s-master prometheus-k8s]# ps -ef|grep node_exporter
root 6227 1 0 Oct08 ? 00:06:43 /usr/local/node_exporter/node_exporter --collector.systemd --collector.systemd.unit-whitelist=(docker|kubelet|kube-proxy|flanneld).service
root 118269 117584 0 23:27 pts/0 00:00:00 grep --color=auto node_exporter

资源对象

kube-state-metrics采集了k8s中各种资源对象的状态信息,只需要在master节点部署就行

https://github.com/kubernetes/kube-state-metrics

  1. 创建rbac的yaml对metrics进行授权
[root@k8s-master prometheus-k8s]# vim kube-state-metrics-rbac.yaml
apiVersion: v1
kind: ServiceAccount
metadata:
name: kube-state-metrics
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: kube-state-metrics
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
resources:
- configmaps
- secrets
- nodes
- pods
- services
- resourcequotas
- replicationcontrollers
- limitranges
- persistentvolumeclaims
- persistentvolumes
- namespaces
- endpoints
verbs: ["list", "watch"]
- apiGroups: ["extensions"]
resources:
- daemonsets
- deployments
- replicasets
verbs: ["list", "watch"]
- apiGroups: ["apps"]
resources:
- statefulsets
verbs: ["list", "watch"]
- apiGroups: ["batch"]
resources:
- cronjobs
- jobs
verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
resources:
- horizontalpodautoscalers
verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: kube-state-metrics-resizer
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
resources:
- pods
verbs: ["get"]
- apiGroups: ["extensions"]
resources:
- deployments
resourceNames: ["kube-state-metrics"]
verbs: ["get", "update"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: kube-state-metrics
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: kube-state-metrics
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: kube-state-metrics
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: kube-state-metrics-resizer
subjects:
- kind: ServiceAccount
name: kube-state-metrics
namespace: kube-system
[root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-rbac.yaml
  1. 编写Deployment和ConfigMap的yaml进行metrics pod部署,不需要进行修改
[root@k8s-master prometheus-k8s]# cat kube-state-metrics-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: kube-state-metrics
namespace: kube-system
labels:
k8s-app: kube-state-metrics
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
version: v1.3.0
spec:
selector:
matchLabels:
k8s-app: kube-state-metrics
version: v1.3.0
replicas: 1
template:
metadata:
labels:
k8s-app: kube-state-metrics
version: v1.3.0
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
priorityClassName: system-cluster-critical
serviceAccountName: kube-state-metrics
containers:
- name: kube-state-metrics
image: lizhenliang/kube-state-metrics:v1.3.0
ports:
- name: http-metrics
containerPort: 8080
- name: telemetry
containerPort: 8081
readinessProbe:
httpGet:
path: /healthz
port: 8080
initialDelaySeconds: 5
timeoutSeconds: 5
- name: addon-resizer
image: lizhenliang/addon-resizer:1.8.3
resources:
limits:
cpu: 100m
memory: 30Mi
requests:
cpu: 100m
memory: 30Mi
env:
- name: MY_POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: MY_POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
volumeMounts:
- name: config-volume
mountPath: /etc/config
command:
- /pod_nanny
- --config-dir=/etc/config
- --container=kube-state-metrics
- --cpu=100m
- --extra-cpu=1m
- --memory=100Mi
- --extra-memory=2Mi
- --threshold=5
- --deployment=kube-state-metrics
volumes:
- name: config-volume
configMap:
name: kube-state-metrics-config
---
# Config map for resource configuration.
apiVersion: v1
kind: ConfigMap
metadata:
name: kube-state-metrics-config
namespace: kube-system
labels:
k8s-app: kube-state-metrics
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
data:
NannyConfiguration: |-
apiVersion: nannyconfig/v1alpha1
kind: NannyConfiguration
[root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-deployment.yaml
  1. 编写Service的yaml对metrics进行端口暴露
[root@k8s-master prometheus-k8s]# cat kube-state-metrics-service.yaml
apiVersion: v1
kind: Service
metadata:
name: kube-state-metrics
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "kube-state-metrics"
annotations:
prometheus.io/scrape: 'true'
spec:
ports:
- name: http-metrics
port: 8080
targetPort: http-metrics
protocol: TCP
- name: telemetry
port: 8081
targetPort: telemetry
protocol: TCP
selector:
k8s-app: kube-state-metrics
[root@k8s-master prometheus-k8s]# kubectl apply -f kube-state-metrics-service.yaml
  1. 检查pod和svc的状态,可以看到正常运行了pod/kube-state-metrics-7c76bdbf68-kqqgd 和对外暴露了8080和8081端口
[root@k8s-master prometheus-k8s]# kubectl get pod,svc -n kube-system
NAME READY STATUS RESTARTS AGE
pod/alertmanager-5d75d5688f-fmlq6 2/2 Running 0 9d
pod/coredns-5bd5f9dbd9-wv45t 1/1 Running 1 9d
pod/grafana-0 1/1 Running 2 15d
pod/kube-state-metrics-7c76bdbf68-kqqgd 2/2 Running 6 14d
pod/kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 5 16d
pod/prometheus-0 2/2 Running 6 15d NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/alertmanager ClusterIP 10.0.0.207 <none> 80/TCP 13d
service/grafana NodePort 10.0.0.74 <none> 80:30091/TCP 15d
service/kube-dns ClusterIP 10.0.0.2 <none> 53/UDP,53/TCP 14d
service/kube-state-metrics ClusterIP 10.0.0.194 <none> 8080/TCP,8081/TCP 14d
service/kubernetes-dashboard NodePort 10.0.0.127 <none> 443:30001/TCP 17d
service/prometheus NodePort 10.0.0.33 <none> 9090:30090/TCP 14d
[root@k8s-master prometheus-k8s]#

5 使用Grafana可视化展示Prometheus监控数据

通常在使用Prometheus采集数据的时候我们需要监控K8S集群中Pod、Node、资源对象,因此我们需要安装对应的插件和资源采集器来提供api进行数据获取,在4.3中我们已经配置好,我们也可以使用Prometheus的UI界面中的Staus菜单下的Target中的各个采集器的状态情况,如图所示:

只有当我们各个Target的状态都是UP状态时,我们可以使用自带的的界面去获取到某一监控项的相关的数据,如图所示:

从上面的图中可以看出Prometheus的界面可视化展示的功能较单一,不能满足需求,因此我们需要结合Grafana来进行可视化展示Prometheus监控数据,在上一章节,已经成功部署了Granfana,因此需要在使用的时候添加dashboard和Panel来设计展示相关的监控项,但是实际上在Granfana社区里面有很多成熟的模板,我们可以直接使用,然后根据自己的环境修改Panel中的查询语句来获取数据

https://grafana.com/grafana/dashboards

推荐模板:

  • 集群资源监控:3119

当模板添加之后如果某一个Panel不显示数据,可以点击Panel上的编辑,查询PromQL语句,然后去Prometheus自己的界面上进行调试PromQL语句是否可以获取到值,最后调整之后的监控界面如图所示

  • 资源状态监控:6417

    同理,添加资源状态的监控模板,然后经过调整之后的监控界面如图所示,可以获取到k8s中各种资源状态的监控展示

  • Node监控:9276

    同理,添加资源状态的监控模板,然后经过调整之后的监控界面如图所示,可以获取到各个node上的基本情况

6 在K8S中部署Alertmanager

6.1 部署Alertmanager

6.2 部署告警

我们以Email来进行实现告警信息的发送

  1. 首先需要准备一个发件邮箱,开启stmp发送功能
  2. 使用configmap存储告警规则,编写报警规则的yaml文件,可根据自己的实际情况进行修改和添加报警的规则,prometheus比zabbix就麻烦在这里,所有的告警规则需要自己去定义
[root@k8s-master prometheus-k8s]# vim prometheus-rules.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-rules
namespace: kube-system
data:
general.rules: |
groups:
- name: general.rules
rules:
- alert: InstanceDown
expr: up == 0
for: 1m
labels:
severity: error
annotations:
summary: "Instance {{ $labels.instance }} 停止工作"
description: "{{ $labels.instance }} job {{ $labels.job }} 已经停止5分钟以上."
node.rules: |
groups:
- name: node.rules
rules:
- alert: NodeFilesystemUsage
expr: 100 - (node_filesystem_free_bytes{fstype=~"ext4|xfs"} / node_filesystem_size_bytes{fstype=~"ext4|xfs"} * 100) > 80
for: 1m
labels:
severity: warning
annotations:
summary: "Instance {{ $labels.instance }} : {{ $labels.mountpoint }} 分区使用率过高"
description: "{{ $labels.instance }}: {{ $labels.mountpoint }} 分区使用大于80% (当前值: {{ $value }})" - alert: NodeMemoryUsage
expr: 100 - (node_memory_MemFree_bytes+node_memory_Cached_bytes+node_memory_Buffers_bytes) / node_memory_MemTotal_bytes * 10
0 > 80
for: 1m
labels:
severity: warning
annotations:
summary: "Instance {{ $labels.instance }} 内存使用率过高"
description: "{{ $labels.instance }}内存使用大于80% (当前值: {{ $value }})" - alert: NodeCPUUsage
expr: 100 - (avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by (instance) * 100) > 60
for: 1m
labels:
severity: warning
annotations:
summary: "Instance {{ $labels.instance }} CPU使用率过高"
description: "{{ $labels.instance }}CPU使用大于60% (当前值: {{ $value }})"
[root@k8s-master prometheus-k8s]# kubectl apply -f prometheus-rules.yaml
  1. 编写告警configmap的yaml文件部署,增加alertmanager告警配置,进行配置邮箱发送地址
[root@k8s-master prometheus-k8s]# vim alertmanager-configmap.yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: alertmanager-config
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: EnsureExists
data:
alertmanager.yml: |
global:
resolve_timeout: 5m
smtp_smarthost: 'mail.goldwind.com.cn:587' #登陆邮件进行查看
smtp_from: 'goldwindscada@goldwind.com.cn' #根据自己申请的发件邮箱进行配置
smtp_auth_username: 'goldwindscada@goldwind.com.cn'
smtp_auth_password: 'Dbadmin@123' receivers:
- name: default-receiver
email_configs:
- to: "zhangdongdong27459@goldwind.com.cn" route:
group_interval: 1m
group_wait: 10s
receiver: default-receiver
repeat_interval: 1m
[root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-configmap.yaml
  1. 创建PVC进行数据持久化,我这个yaml文件使用的跟Prometheus安装时用的存储类来进行自动供给,需要根据自己的实际情况修改
[root@k8s-master prometheus-k8s]# vim alertmanager-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: alertmanager
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: EnsureExists
spec:
storageClassName: managed-nfs-storage
accessModes:
- ReadWriteOnce
resources:
requests:
storage: "2Gi"
[root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-pvc.yaml
  1. 编写deployment的yaml来部署alertmanager的pod
[root@k8s-master prometheus-k8s]# vim alertmanager-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: alertmanager
namespace: kube-system
labels:
k8s-app: alertmanager
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
version: v0.14.0
spec:
replicas: 1
selector:
matchLabels:
k8s-app: alertmanager
version: v0.14.0
template:
metadata:
labels:
k8s-app: alertmanager
version: v0.14.0
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ''
spec:
priorityClassName: system-cluster-critical
containers:
- name: prometheus-alertmanager
image: "prom/alertmanager:v0.14.0"
imagePullPolicy: "IfNotPresent"
args:
- --config.file=/etc/config/alertmanager.yml
- --storage.path=/data
- --web.external-url=/
ports:
- containerPort: 9093
readinessProbe:
httpGet:
path: /#/status
port: 9093
initialDelaySeconds: 30
timeoutSeconds: 30
volumeMounts:
- name: config-volume
mountPath: /etc/config
- name: storage-volume
mountPath: "/data"
subPath: ""
resources:
limits:
cpu: 10m
memory: 50Mi
requests:
cpu: 10m
memory: 50Mi
- name: prometheus-alertmanager-configmap-reload
image: "jimmidyson/configmap-reload:v0.1"
imagePullPolicy: "IfNotPresent"
args:
- --volume-dir=/etc/config
- --webhook-url=http://localhost:9093/-/reload
volumeMounts:
- name: config-volume
mountPath: /etc/config
readOnly: true
resources:
limits:
cpu: 10m
memory: 10Mi
requests:
cpu: 10m
memory: 10Mi
volumes:
- name: config-volume
configMap:
name: alertmanager-config
- name: storage-volume
persistentVolumeClaim:
claimName: alertmanager
[root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-deployment.yaml
  1. 创建 alertmanager的service对外暴露的端口
[root@k8s-master prometheus-k8s]# vim alertmanager-service.yaml
apiVersion: v1
kind: Service
metadata:
name: alertmanager
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Alertmanager"
spec:
ports:
- name: http
port: 80
protocol: TCP
targetPort: 9093
selector:
k8s-app: alertmanager
type: "ClusterIP"
[root@k8s-master prometheus-k8s]# kubectl apply -f alertmanager-service.yaml
  1. 检测部署状态,可以发现pod/alertmanager-5d75d5688f-fmlq6和service/alertmanager正常运行
[root@k8s-master prometheus-k8s]# kubectl get pod,svc -n kube-system -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
pod/alertmanager-5d75d5688f-fmlq6 2/2 Running 4 10d 172.17.15.2 192.168.73.140 <none> <none>
pod/coredns-5bd5f9dbd9-qxvmz 1/1 Running 0 42m 172.17.33.2 192.168.73.138 <none> <none>
pod/grafana-0 1/1 Running 3 16d 172.17.31.2 192.168.73.139 <none> <none>
pod/kube-state-metrics-7c76bdbf68-hv56m 2/2 Running 0 23h 172.17.15.3 192.168.73.140 <none> <none>
pod/kubernetes-dashboard-7d77666777-d5ng4 1/1 Running 6 17d 172.17.31.4 192.168.73.139 <none> <none>
pod/prometheus-0 2/2 Running 8 16d 172.17.83.2 192.168.73.135 <none> <none> NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
service/alertmanager ClusterIP 10.0.0.207 <none> 80/TCP 14d k8s-app=alertmanager
service/grafana NodePort 10.0.0.74 <none> 80:30091/TCP 16d app=grafana
service/kube-dns ClusterIP 10.0.0.2 <none> 53/UDP,53/TCP 42m k8s-app=kube-dns
service/kube-state-metrics ClusterIP 10.0.0.194 <none> 8080/TCP,8081/TCP 15d k8s-app=kube-state-metrics
service/kubernetes-dashboard NodePort 10.0.0.127 <none> 443:30001/TCP 18d k8s-app=kubernetes-dashboard
service/prometheus NodePort 10.0.0.33 <none> 9090:30090/TCP 15d k8s-app=prometheus

6.3 测试告警发送

k8s实战之部署Prometheus+Grafana可视化监控告警平台的更多相关文章

  1. Spring Boot 微服务应用集成Prometheus + Grafana 实现监控告警

    Spring Boot 微服务应用集成Prometheus + Grafana 实现监控告警 一.添加依赖 1.1 Actuator 的 /prometheus端点 二.Prometheus 配置 部 ...

  2. Prometheus+Grafana企业监控系统

    Prometheus+Grafana企业监控系统 作者 刘畅 实验配置: 主机名称 Ip地址 controlnode 172.16.1.70/24 slavenode1 172.16.1.71/24 ...

  3. 基于k8s集群部署prometheus监控ingress nginx

    目录 基于k8s集群部署prometheus监控ingress nginx 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署pro ...

  4. 基于k8s集群部署prometheus监控etcd

    目录 基于k8s集群部署prometheus监控etcd 1.背景和环境概述 2.修改prometheus配置 3.检查是否生效 4.配置grafana图形 基于k8s集群部署prometheus监控 ...

  5. go-zero docker-compose 搭建课件服务(七):prometheus+grafana服务监控

    0.转载 go-zero docker-compose 搭建课件服务(七):prometheus+grafana服务监控 0.1源码地址 https://github.com/liuyuede123/ ...

  6. Prometheus Grafana可视化展示Linux资源使用率

    Prometheus Grafana可视化展示Linux资源使用率  Grfana官方仪表盘下载:https://grafana.com/dashboards 数据源推荐:https://grafan ...

  7. 部署Prometheus+Grafana监控

    Prometheus 1.不是很友好,各种配置都手写 2.对docker和k8s监控有成熟解决方案 Prometheus(普罗米修斯) 是一个最初在SoudCloud上构建的监控系统,开源项目,拥有非 ...

  8. Rancher2.x 一键式部署 Prometheus + Grafana 监控 Kubernetes 集群

    目录 1.Prometheus & Grafana 介绍 2.环境.软件准备 3.Rancher 2.x 应用商店 4.一键式部署 Prometheus 5.验证 Prometheus + G ...

  9. k8b部署prometheus+grafana

    来源: https://juejin.im/post/5c36054251882525a50bbdf0 https://github.com/redhatxl/k8s-prometheus-grafa ...

随机推荐

  1. 【C#】C#中使用GDAL3(三):Windows下编译插件驱动

    转载请注明原文地址:https://www.cnblogs.com/litou/p/15720236.html 本文为<C#中使用GDAL3>的第三篇,总目录地址:https://www. ...

  2. Java程序设计基础笔记 • 【第1章 初识Java】

    全部章节   >>>> 本章目录 1.1 程序的概念及Java语言介绍 1.1.1 生活中的程序 1.1.2 计算机程序 1.1.3 算法和流程图 1.1.4 实践练习 1.2 ...

  3. JavaScript交互式网页设计 • 【第3章 JavaScript浏览器对象模型】

    全部章节   >>>> 本章目录 3.1 浏览器对象模型 3.1.1 浏览器对象模型 3.2 window 对象 3.2.1 window 对象的常用属性及方法 3.2.2 使 ...

  4. 浅议像素化与体素化Part.1——平面图形像素化

    什么是像素化 学计算机的人往往都比较清楚图形和图像的区别,而且往往能够从数据结构的角度理解这两者的区别,一般来说,图形是由几何空间中的基本图元所组成,表现为用外部轮廓线条勾勒成的矢量图.例如由计算机绘 ...

  5. spring security 关于 http.sessionManagement().maximumSessions(1);的探究

    1.前言 spring security 支持对session的管理 , http.sessionManagement().maximumSessions(1);的意思的开启session管理,ses ...

  6. tomcat启动卡在了 At least one JAR was scanned for TLDs yet contained no TLDs 的根本原因与解决办法

    1.前言 有时候服务器开启时启动不了,卡在了 org.apache.jasper.servlet.TldScanner.scanJars At least one JAR was scanned fo ...

  7. 第10组 Alpha冲刺 (2/6)

    1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/ ·作业博客:https://edu.cnblogs.com/campus/fzu/FZ ...

  8. Vue养成之路

    目录 Vue系列教程(一)之初识Vue Vue系列教程(二)之Vue进阶 Vue系列继承(三)之Vue-cli脚手架的使用 ... 更新中 基础入门 Vue基础(一)之es6 Vue基础(二)之箭头函 ...

  9. HDU 1576 A/B (两种解法)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 分析:等式枚举法,由题意可得:, ,代入 ,    得:,把变量 合在一起得: :即满足 为 倍 ...

  10. 局域网内部怎么安全接入U盘?

    准备工具: 内部专用U盘一个: 能连接外网的电脑(暂称"安全机")一个. 第一.安全机上安装360杀毒.360安全卫士或其它安全软件.并经常更新病毒库.木马库. 第二.外来U盘先通 ...